Skip to content

Applied self-built neural networks (Multi-layer perceptron, AlexNet) and pre-trained deep-learning models (VGG-16, ResNet50, InceptionV3, InceptionResnetV2) to achieve a 90% accuracy rate.

Notifications You must be signed in to change notification settings

dylanzxc/Dog_breeds_identification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dog Breed Classification

Project Structure

base.py   # main file to train the network
dataProcess.py   # pre-process input images
network.py   # network constructor and trainer

How to run the code

python3 -m venv venv
source venv/bin/activate
pip3 install -r requirements.txt
python3 base.py

Folder structure

.
├── base.py               ## main program
├── dataProcess.py        ## image pre-process
├── dog_breed_VGG16.py
├── labels.csv            ## label of class-picture
├── network.py            ## neural network
├── README.md
├── requirements.txt
├── resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5
├── sample_submission.csv
├── test                  ## data for kaggle, not usable yet
├── train                 ## train data, has 7k images
└── val                   ## validation data, has 3k images

About

Applied self-built neural networks (Multi-layer perceptron, AlexNet) and pre-trained deep-learning models (VGG-16, ResNet50, InceptionV3, InceptionResnetV2) to achieve a 90% accuracy rate.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published