Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

{ai,lib}[foss/2023a,gfbf/2023a] RAPIDS v24.4, CUDA-Python v12.1.0 w/ CUDA 12.1.1 #21058

Merged
merged 4 commits into from
Sep 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
easyblock = 'PythonBundle'

name = 'CUDA-Python'
# Warning: major and minor versions of CUDA and CUDA-Python are tied
version = '12.1.0'
versionsuffix = '-CUDA-%(cudaver)s'

homepage = 'https://nvidia.github.io/cuda-python/'
description = "Python bindings for CUDA"
github_account = 'NVIDIA'

toolchain = {'name': 'gfbf', 'version': '2023a'}

dependencies = [
('CUDA', '%(version_major)s.%(version_minor)s.1', '', SYSTEM),
('Python', '3.11.3'),
('SciPy-bundle', '2023.07'),
]

use_pip = True

exts_list = [
('pyclibrary', '0.2.2', {
'checksums': ['9902fffe361bb86f57ab62aa4195ec4dd382b63c5c6892be6d9784ec0a3575f7'],
}),
('cuda-python', version, {
'modulename': 'cuda',
'source_urls': ['https://github.com/%(github_account)s/%(namelower)s/archive'],
'sources': [{'download_filename': 'v%(version)s.tar.gz', 'filename': '%(namelower)s-%(version)s.tar.gz'}],
'checksums': ['6fdfacaabbd6bc7f5dddec3ecf6bb0968e4a6b5151896d6352703ff5e0fc4abb'],
}),
]

sanity_pip_check = True

sanity_check_commands = ["python -c 'from cuda import cuda, nvrtc'"]

moduleclass = 'lib'
215 changes: 215 additions & 0 deletions easybuild/easyconfigs/r/RAPIDS/RAPIDS-24.4-foss-2023a-CUDA-12.1.1.eb
Original file line number Diff line number Diff line change
@@ -0,0 +1,215 @@
easyblock = 'PythonBundle'

name = 'RAPIDS'
version = '24.4'
versionsuffix = '-CUDA-%(cudaver)s'

homepage = 'https://rapids.ai/'
description = """RAPIDS provides unmatched speed with familiar APIs that match the most popular
PyData libraries. Built on state-of-the-art foundations like NVIDIA CUDA and
Apache Arrow, it unlocks the speed of GPUs with code you already know."""

toolchain = {'name': 'foss', 'version': '2023a'}

builddependencies = [
('hatchling', '1.18.0'), # needed by treelite
('CMake', '3.26.3'), # needed by treelite
]

dependencies = [
('CUDA', '12.1.1', '', SYSTEM),
('cuDNN', '8.9.2.26', versionsuffix, SYSTEM),
('NCCL', '2.18.3', versionsuffix),
('Python', '3.11.3'),
('CUDA-Python', '12.1.0', versionsuffix),
('Python-bundle-PyPI', '2023.06'),
('SciPy-bundle', '2023.07'),
('aiohttp', '3.8.5'),
('Arrow', '14.0.1'),
('dask', '2023.9.2'),
('geopandas', '0.14.2'),
('jupyter-server-proxy', '4.0.0'),
('numba', '0.58.1'),
('protobuf-python', '4.24.0'),
('pyproj', '3.6.0'),
('scikit-image', '0.22.0'),
('Shapely', '2.0.1'),
('tqdm', '4.66.1'),
('xarray', '2023.9.0'),
]

# Installation based on wheels provided by Nvidia on pypi.nvidia.com
# Some of the extensions have alternatives as regular dependencies, such as
# cupy or ucx-py. However, they are still installed as extensions because the
# other wheels from Nvidia require those packages but with special cuda
# suffixes (e.g. "cupy_cuda12x" instead of "cupy")

use_pip = True

_whl_name_cuda = '%(name)s_cu%(cudamajver)s-%(version)s'
_whl_py_noneany = '-py%(pymajver)s-none-any.whl'
_whl_cp_version = '-cp%(pymajver)s%(pyminver)s-cp%(pymajver)s%(pyminver)s'
_whl_cp_linux28 = '-manylinux_2_28_x86_64.whl'
_whl_cp_linux27 = '-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl'
_whl_cp_linux17 = '-manylinux_2_17_x86_64.manylinux2014_x86_64.whl'
_whl_cp_linux14 = '-manylinux2014_x86_64.whl'

exts_default_options = {
'source_urls': [PYPI_SOURCE, 'https://pypi.nvidia.com/%(name)s-cu%(cudamajver)s'],
'source_tmpl': SOURCE_TAR_GZ,
}

exts_list = [
('cudf', '24.4.1', {
'source_tmpl': _whl_name_cuda + _whl_cp_version + _whl_cp_linux28,
'checksums': ['545c8845402b49bfbd35cda3653c12a6c776cfc873cada181f866c61223cde34'],
}),
('dask_cudf', '24.4.1', {
'source_tmpl': _whl_name_cuda + _whl_py_noneany,
'source_urls': ['https://pypi.nvidia.com/dask-cudf-cu%(cudamajver)s'],
'checksums': ['b18846636c846722b915af1a6828f6f70f17f5f8aff0d61bb19c3e6067e03b3e'],
}),
('cuml', '24.4.0', {
'source_tmpl': _whl_name_cuda + _whl_cp_version + _whl_cp_linux17,
'checksums': ['6c7e7209a01a872a9699bfb851678b30dde47cb003859bca059ca5395add46d3'],
}),
('cugraph', '24.4.0', {
'source_tmpl': _whl_name_cuda + _whl_cp_version + _whl_cp_linux17,
'checksums': ['968d3733a8559812574ffa4dd226b6c6eac19ef8dc395088121f2e37e1f00f38'],
}),
('cuspatial', '24.4.0', {
'source_tmpl': _whl_name_cuda + _whl_cp_version + _whl_cp_linux17,
'checksums': ['3ec862f6fd82e6e79f2ce90c416ef4323e489a02494b67424ea380143531d121'],
}),
('cuproj', '24.4.0', {
'source_tmpl': _whl_name_cuda + _whl_cp_version + _whl_cp_linux17,
'checksums': ['46b6a0e5174039bdcf2352e12c9b2bf67f4f6a1da23b3302293779e291dc9b7b'],
}),
('cuxfilter', '24.4.1', {
'source_tmpl': _whl_name_cuda + _whl_py_noneany,
'checksums': ['c8f2f11a5e908854e5368c489b045fc578794fcb28978aa56351831025f570e5'],
}),
('cucim', '24.4.0', {
'source_tmpl': _whl_name_cuda + _whl_cp_version + _whl_cp_linux17,
'checksums': ['5cf9e5de6403d21679a79fa6d1fe9b18f6823687658a60292e4f092474363326'],
}),
('pylibraft', '24.4.0', {
'source_tmpl': _whl_name_cuda + _whl_cp_version + _whl_cp_linux17,
'checksums': ['245733dd2f2f3cb4286619966b83695387d76df7b91fda8dd8d934936b8db987'],
}),
('raft_dask', '24.4.0', {
'source_tmpl': _whl_name_cuda + _whl_cp_version + _whl_cp_linux17,
'source_urls': ['https://pypi.nvidia.com/raft-dask-cu%(cudamajver)s'],
'checksums': ['97e39a93aee39876168fe61f9734f1a137ca9f3cb5801a22f08fe857e3ee269d'],
}),
('cuvs', '24.4.0', {
'source_tmpl': _whl_name_cuda + _whl_cp_version + _whl_cp_linux17,
'checksums': ['e9e5def770bfe69f94563a8470d2d68730abf3ddfb0ab2ebf0392e73a9ba0fdc'],
}),
('cupy-cuda12x', '13.2.0', {
'modulename': 'cupy',
'source_tmpl': 'cupy_cuda%(cudamajver)sx-%(version)s' + _whl_cp_version + _whl_cp_linux14,
'checksums': ['6474fa977e7df03e92374698f2b757065c5b14733b2bbacc19301cc440acafdd'],
}),
('nvtx', '0.2.10', {
'source_tmpl': '%(name)s-%(version)s' + _whl_cp_version + _whl_cp_linux17,
'checksums': ['71a1a641d4db137da8166d689d835a42f92b97cf2658ea069cbed162b8c5dd79'],
}),
('pynvjitlink-cu12', '0.3.0', {
'modulename': 'pynvjitlink',
'source_tmpl': 'pynvjitlink_cu%(cudamajver)s-%(version)s' + _whl_cp_version + _whl_cp_linux27,
'checksums': ['f56395025da610cb3aeaf4b04f4cbeb15676fb922738426028cc663324147ca4'],
}),
('rmm', '24.4.0', {
'source_tmpl': _whl_name_cuda + _whl_cp_version + _whl_cp_linux17,
'checksums': ['bd0f4a0a63be30381aafb169912130dadb3c107dd489c95f6dec14638bc0cb48'],
}),
('rapids_dask_dependency', '24.4.1', {
'source_tmpl': SOURCE_PY3_WHL,
'source_urls': ['https://pypi.nvidia.com/rapids-dask-dependency'],
'checksums': ['0713b99711cc2beda5e9bc52e4436c9d9131e9ab63c67c6628511703a7fefe3f'],
}),
('dask_cuda', '24.4.0', {
'source_tmpl': SOURCE_PY3_WHL,
'checksums': ['0f70bbbac8c7f19071ad9a78398ce7a3d17f10e5c70212810a9f1de8c50eae7f'],
}),
('pynvml', '11.4.1', {
'source_tmpl': SOURCE_PY3_WHL,
'checksums': ['d27be542cd9d06558de18e2deffc8022ccd7355bc7382255d477038e7e424c6c'],
}),
('ucx_py', '0.37.0', {
'modulename': 'ucp',
'source_tmpl': _whl_name_cuda + _whl_cp_version + _whl_cp_linux17,
'source_urls': ['https://pypi.nvidia.com/ucx-py-cu%(cudamajver)s'],
'checksums': ['32235eaf1191ea4fa0e795704ee51ec7bffc879ce075cbbbdd60ff994daed79c'],
}),
('pylibcugraph', '24.4.0', {
'source_tmpl': _whl_name_cuda + _whl_cp_version + _whl_cp_linux17,
'checksums': ['1deb52562124343314cef504a92ac62afb5b6448cfffa19db8d208e6affe21b7'],
}),
('multipledispatch', '1.0.0', {
'checksums': ['5c839915465c68206c3e9c473357908216c28383b425361e5d144594bf85a7e0'],
}),
('colorcet', '3.1.0', {
'checksums': ['2921b3cd81a2288aaf2d63dbc0ce3c26dcd882e8c389cc505d6886bf7aa9a4eb'],
}),
('pyct', '0.5.0', {
'checksums': ['dd9f4ac5cbd8e37c352c04036062d3c5f67efec76d404761ef16b0cbf26aa6a0'],
}),
('param', '2.1.1', {
'checksums': ['3b1da14abafa75bfd908572378a58696826b3719a723bc31b40ffff2e9a5c852'],
}),
('datashader', '0.16.3', {
'checksums': ['9d0040c7887f7a5a5edd374c297402fd208a62bf6845e87631b54f03b9ae479d'],
}),
('pyviz_comms', '3.0.2', {
'source_tmpl': SOURCE_PY3_WHL,
'checksums': ['31541b976a21b7738557c3ea23bd8e44e94e736b9ed269570dcc28db4449d7e3'],
}),
('holoviews', '1.19.1', {
'checksums': ['b9e85e8c07275a456c0ef8d06bc157d02b37eff66fb3602aa12f5c86f084865c'],
}),
('uc-micro-py', '1.0.3', {
'modulename': 'uc_micro',
'checksums': ['d321b92cff673ec58027c04015fcaa8bb1e005478643ff4a500882eaab88c48a'],
}),
('linkify-it-py', '2.0.3', {
'modulename': 'linkify_it',
'checksums': ['68cda27e162e9215c17d786649d1da0021a451bdc436ef9e0fa0ba5234b9b048'],
}),
('Markdown', '3.6', {
'checksums': ['ed4f41f6daecbeeb96e576ce414c41d2d876daa9a16cb35fa8ed8c2ddfad0224'],
}),
('mdit_py_plugins', '0.4.1', {
'checksums': ['834b8ac23d1cd60cec703646ffd22ae97b7955a6d596eb1d304be1e251ae499c'],
}),
('panel', '1.2.3', {
'source_tmpl': SOURCE_WHL,
'checksums': ['0805bacf4a613e8869163bf80f50e59a89838afe76bdbe6a05ab5637f32683f7'],
}),
('fastrlock', '0.8.2', {
'checksums': ['644ec9215cf9c4df8028d8511379a15d9c1af3e16d80e47f1b6fdc6ba118356a'],
}),
('dask', '2024.1.1', {
# overload dependency on dask due to strict requirement by rapids_dask_dependency
'checksums': ['d0dc92e81ce68594a0a0ce23ba33f4d648f2c2f4217ab9b79068b7ecfb0416c7'],
}),
('distributed', '2024.1.1', {
'checksums': ['28cf5e9f4f07197b03ea8e5272e374ce2b9e9dc6742f6c9b525fd81645213c67'],
}),
('dask-expr', '0.4.0', {
'checksums': ['ee86ac5a5d3a892341af7ffab58e3a579c12aacbe332f2fe7477f668ac260279'],
}),
('cachetools', '5.3.3', {
'checksums': ['ba29e2dfa0b8b556606f097407ed1aa62080ee108ab0dc5ec9d6a723a007d105'],
}),
('treelite', '4.1.2', {
'checksums': ['d6e6338b601fb3304425966de8a0f1073cb9f7917bcd6e3cdaeaf3492f247425'],
}),
]

# RAPIDS v24.4 only supports GPUs with NVIDIA Volta architecture or newer
# Sanity checks need a physical GPU device
sanity_pip_check = True

moduleclass = 'ai'
Loading