Skip to content

[CVPR 2024] Official PyTorch implementation of "ECLIPSE: Revisiting the Text-to-Image Prior for Efficient Image Generation"

License

Notifications You must be signed in to change notification settings

eclipse-t2i/eclipse-inference

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

[CVPR 2024] ECLIPSE: Revisiting the Text-to-Image Prior for Effecient Image Generation

Solar Eclipse image generated by ECLIPSE

This repository contains the inference code for our paper, ECLIPSE. We show how to utilize the pre-trained ECLIPSE text-to-image prior associated with diffusion image decoders such as Karlo and Kandinsky.

  • ECLIPSE presents the tiny prior learning strategy that compresses the previous prior models from 1 billion parameters down to 33 million parameters.
  • Additionally, ECLIPSE prior is trained on a mere 5 million image-text (alt-text) pairs.

News: Checkout our latest work, λ-ECLIPSE extending the T2I priors for effecient zero-shot multi-subject driven text-to-image generations.

Please follow the below steps to run the inference locally.


Qualitative Comparisons: Examples

Quantitative Comparisons: Results

TODOs:

  • Release ECLIPSE priors for Kandinsky v2.2 and Karlo-v1-alpha.
  • Release the demo.
  • Release ECLIPSE prior with Kandinsky v2.2 LCM decoder. (soon!)
  • Release ECLIPSE prior training code. (will be released in seperate repository)

Setup

Installation

git clone git@github.com:eclipse-t2i/eclipse-inference.git

conda create -p ./venv python=3.9
pip install -r requirements.txt

Demo

conda activate ./venv
gradio main.py

Run Inference

This repository supports two pre-trained image decoders: Karlo-v1-alpha and Kandinsky-v2.2.

Note: ECLIPSE prior is not a diffusion model -- while image decoders are.

Kandinsky Inference

from transformers import CLIPTextModelWithProjection, CLIPTokenizer
from src.pipelines.pipeline_kandinsky_prior import KandinskyPriorPipeline
from src.priors.prior_transformer import PriorTransformer
from diffusers import DiffusionPipeline

text_encoder = (
    CLIPTextModelWithProjection.from_pretrained(
        "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
        projection_dim=1280,
        torch_dtype=torch.float32,
    )
) 

tokenizer = CLIPTokenizer.from_pretrained(
    "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
)

prior = PriorTransformer.from_pretrained("ECLIPSE-Community/ECLIPSE_KandinskyV22_Prior")
pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior",    
  prior=prior,
  text_encoder=text_encoder,
  tokenizer=tokenizer,
).to("cuda")

pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder").to("cuda")

prompt = "black apples in the basket"
image_embeds, negative_image_embeds = pipe_prior(prompt).to_tuple()
images = pipe(
    num_inference_steps=50,
    image_embeds=image_embeds,
    negative_image_embeds=negative_image_embeds,
).images

images[0]

Karlo Inference

from src.pipelines.pipeline_unclip import UnCLIPPipeline
from src.priors.prior_transformer import PriorTransformer

prior = PriorTransformer.from_pretrained("ECLIPSE-Community/ECLIPSE_Karlo_Prior")
pipe = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", prior=prior).to("cuda")

prompt="black apples in the basket"
images = pipe(prompt, decoder_guidance_scale=7.5).images

images[0]

Acknowledgement

We would like to acknoweldge excellent open-source text-to-image models (Kalro and Kandinsky) without them this work would not have been possible. Also, we thank HuggingFace for streamlining the T2I models.

About

[CVPR 2024] Official PyTorch implementation of "ECLIPSE: Revisiting the Text-to-Image Prior for Efficient Image Generation"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages