Skip to content

Commit

Permalink
test(vocoder): disable wavegrad training test in CI
Browse files Browse the repository at this point in the history
  • Loading branch information
eginhard committed Mar 8, 2024
1 parent f782a65 commit dca564a
Showing 1 changed file with 47 additions and 36 deletions.
83 changes: 47 additions & 36 deletions tests/vocoder_tests/test_wavegrad_train.py
Original file line number Diff line number Diff line change
@@ -1,43 +1,54 @@
import glob
import os
import shutil
import unittest

from tests import get_device_id, get_tests_output_path, run_cli
from TTS.vocoder.configs import WavegradConfig

config_path = os.path.join(get_tests_output_path(), "test_vocoder_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")

config = WavegradConfig(
batch_size=8,
eval_batch_size=8,
num_loader_workers=0,
num_eval_loader_workers=0,
run_eval=True,
test_delay_epochs=-1,
epochs=1,
seq_len=8192,
eval_split_size=1,
print_step=1,
print_eval=True,
data_path="tests/data/ljspeech",
output_path=output_path,
test_noise_schedule={"min_val": 1e-6, "max_val": 1e-2, "num_steps": 2},
)
config.audio.do_trim_silence = True
config.audio.trim_db = 60
config.save_json(config_path)

# train the model for one epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --config_path {config_path} "
run_cli(command_train)

# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)

# restore the model and continue training for one more epoch
command_train = (
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --continue_path {continue_path} "
)
run_cli(command_train)
shutil.rmtree(continue_path)

class WavegradTrainingTest(unittest.TestCase):
# TODO: Reactivate after improving CI run times
# This test currently takes ~2h on CI (15min/step vs 8sec/step locally)
if os.getenv("GITHUB_ACTIONS") == "true":
__test__ = False

def test_train(self): # pylint: disable=no-self-use
config_path = os.path.join(get_tests_output_path(), "test_vocoder_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")

config = WavegradConfig(
batch_size=8,
eval_batch_size=8,
num_loader_workers=0,
num_eval_loader_workers=0,
run_eval=True,
test_delay_epochs=-1,
epochs=1,
seq_len=8192,
eval_split_size=1,
print_step=1,
print_eval=True,
data_path="tests/data/ljspeech",
output_path=output_path,
test_noise_schedule={"min_val": 1e-6, "max_val": 1e-2, "num_steps": 2},
)
config.audio.do_trim_silence = True
config.audio.trim_db = 60
config.save_json(config_path)

# train the model for one epoch
command_train = (
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --config_path {config_path} "
)
run_cli(command_train)

# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)

# restore the model and continue training for one more epoch
command_train = (
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --continue_path {continue_path} "
)
run_cli(command_train)
shutil.rmtree(continue_path)

0 comments on commit dca564a

Please sign in to comment.