Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ML] Validate at least one feature is available for DF analytics #55876

Conversation

dimitris-athanasiou
Copy link
Contributor

We were previously checking at least one supported field existed
when the _explain API was called. However, in the case of analyses
with required fields (e.g. regression) we were not accounting that
the dependent variable is not a feature and thus if the source index
only contains the dependent variable field there are no features to
train a model on.

This commit adds a validation that at least one feature is available
for analysis. Note that we also move that validation away from
ExtractedFieldsDetector and the _explain API and straight into
the _start API. The reason for doing this is to allow the user to use
the _explain API in order to understand why they would be seeing an
error like this one.

For example, the user might be using an index that has fields but
they are of unsupported types. If they start the job and get
an error that there are no features, they will wonder why that is.
Calling the _explain API will show them that all their fields are
unsupported. If the _explain API was failing instead, there would
be no way for the user to understand why all those fields are
ignored.

Closes #55593

We were previously checking at least one supported field existed
when the _explain API was called. However, in the case of analyses
with required fields (e.g. regression) we were not accounting that
the dependent variable is not a feature and thus if the source index
only contains the dependent variable field there are no features to
train a model on.

This commit adds a validation that at least one feature is available
for analysis. Note that we also move that validation away from
`ExtractedFieldsDetector` and the _explain API and straight into
the _start API. The reason for doing this is to allow the user to use
the _explain API in order to understand why they would be seeing an
error like this one.

For example, the user might be using an index that has fields but
they are of unsupported types. If they start the job and get
an error that there are no features, they will wonder why that is.
Calling the _explain API will show them that all their fields are
unsupported. If the _explain API was failing instead, there would
be no way for the user to understand why all those fields are
ignored.

Closes elastic#55593
@elasticmachine
Copy link
Collaborator

Pinging @elastic/ml-core (:ml)

@przemekwitek przemekwitek self-requested a review April 28, 2020 16:59
Copy link
Contributor

@przemekwitek przemekwitek left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM

@dimitris-athanasiou
Copy link
Contributor Author

@elasticmachine update branch

@dimitris-athanasiou dimitris-athanasiou merged commit 0666be5 into elastic:master Apr 29, 2020
@dimitris-athanasiou dimitris-athanasiou deleted the validate-at-least-one-feature-available branch April 29, 2020 07:51
dimitris-athanasiou added a commit that referenced this pull request Apr 29, 2020
…#55876) (#55914)

We were previously checking at least one supported field existed
when the _explain API was called. However, in the case of analyses
with required fields (e.g. regression) we were not accounting that
the dependent variable is not a feature and thus if the source index
only contains the dependent variable field there are no features to
train a model on.

This commit adds a validation that at least one feature is available
for analysis. Note that we also move that validation away from
`ExtractedFieldsDetector` and the _explain API and straight into
the _start API. The reason for doing this is to allow the user to use
the _explain API in order to understand why they would be seeing an
error like this one.

For example, the user might be using an index that has fields but
they are of unsupported types. If they start the job and get
an error that there are no features, they will wonder why that is.
Calling the _explain API will show them that all their fields are
unsupported. If the _explain API was failing instead, there would
be no way for the user to understand why all those fields are
ignored.

Closes #55593

Backport of #55876
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

[ML] DFA job gets stuck when no field except the dependent variable is included in the analysis
4 participants