Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ML] Store calendar periodicity historical error statistics in compressed format #127

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions docs/CHANGELOG.asciidoc
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,9 @@ new processes being created and macOS uses the sandbox functionality ({pull}98[#
Fix a bug causing us to under estimate the memory used by shared pointers and reduce the memory consumed
by unnecessary reference counting ({pull}108[#108])

Reduce model memory by storing state for testing for predictive calendar features in a compressed format
({pull}127[#127])

=== Bug Fixes

Age seasonal components in proportion to the fraction of values with which they're updated ({pull}88[#88])
Expand Down
133 changes: 133 additions & 0 deletions include/maths/CCalendarCyclicTest.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,133 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License;
* you may not use this file except in compliance with the Elastic License.
*/

#ifndef INCLUDED_ml_maths_CCalendarCyclicTest_h
#define INCLUDED_ml_maths_CCalendarCyclicTest_h

#include <core/CMemoryUsage.h>
#include <core/CoreTypes.h>

#include <maths/CCalendarFeature.h>
#include <maths/CQuantileSketch.h>
#include <maths/ImportExport.h>
#include <maths/MathsTypes.h>

#include <boost/optional.hpp>

#include <cstdint>
#include <vector>

namespace ml {
namespace core {
class CStatePersistInserter;
class CStateRestoreTraverser;
}
namespace maths {

//! \brief The basic idea of this test is to see if there is stronger
//! than expected temporal correlation between large prediction errors
//! and calendar features.
//!
//! DESCRIPTION:\n
//! This maintains prediction error statistics for a collection of
//! calendar features. These are things like "day of month",
//! ("day of week", "week month") pairs and so on. The test checks to
//! see if the number of large prediction errors is statistically high,
//! i.e. are there many more errors exceeding a specified percentile
//! than one would expect given that this is expected to be binomial.
//! Amongst features with statistically significant frequencies of large
//! errors it returns the feature with the highest mean prediction error.
class MATHS_EXPORT CCalendarCyclicTest {
public:
using TOptionalFeature = boost::optional<CCalendarFeature>;

public:
explicit CCalendarCyclicTest(double decayRate = 0.0);

//! Initialize by reading state from \p traverser.
bool acceptRestoreTraverser(core::CStateRestoreTraverser& traverser);

//! Persist state by passing information to \p inserter.
void acceptPersistInserter(core::CStatePersistInserter& inserter) const;

//! Age the bucket values to account for \p time elapsed time.
void propagateForwardsByTime(double time);

//! Add \p error at \p time.
void add(core_t::TTime time, double error, double weight = 1.0);

//! Check if there are calendar components.
TOptionalFeature test() const;

//! Get a checksum for this object.
std::uint64_t checksum(std::uint64_t seed = 0) const;

//! Debug the memory used by this object.
void debugMemoryUsage(core::CMemoryUsage::TMemoryUsagePtr mem) const;

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

#include <core/CMemoryUsage.h>


//! Get the memory used by this object.
std::size_t memoryUsage() const;

private:
using TTimeVec = std::vector<core_t::TTime>;
using TByte = unsigned char;
using TByteVec = std::vector<TByte>;

//! \brief Records the daily error statistics.
struct MATHS_EXPORT SErrorStats {
//! Get a checksum for this object.
std::uint64_t checksum() const;
//! Convert to a delimited string.
std::string toDelimited() const;
//! Initialize from a delimited string.
bool fromDelimited(const std::string& str);

std::uint32_t s_Count = 0;
std::uint32_t s_LargeErrorCount = 0;
CFloatStorage s_LargeErrorSum = 0.0;

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

#include <core/CFloatStorage.h>

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

For historical reasons this is forwarded in to the maths namespace in MathsTypes.h which I included instead.

};
using TErrorStatsVec = std::vector<SErrorStats>;

private:
//! Winsorise \p error.
double winsorise(double error) const;

//! Get the significance of \p x large errors given \p n samples.
double significance(double n, double x) const;

//! Convert to a compressed representation.
void deflate(const TErrorStatsVec& stats);

//! Extract from the compressed representation.
TErrorStatsVec inflate() const;

private:
//! The rate at which the error counts are aged.
double m_DecayRate;

//! Used to estimate large error thresholds.
CQuantileSketch m_ErrorQuantiles;

//! The start time of the bucket to which the last error
//! was added.
core_t::TTime m_CurrentBucketTime;

//! The start time of the earliest bucket for which we have
//! error statistics.
core_t::TTime m_CurrentBucketIndex;

//! The bucket statistics currently being updated.
SErrorStats m_CurrentBucketErrorStats;

//! The compressed error statistics.
//!
//! \note We always persist the errors in uncompressed format.
TByteVec m_CompressedBucketErrorStats;
};
}
}

#endif // INCLUDED_ml_maths_CCalendarCyclicTest_h
Original file line number Diff line number Diff line change
Expand Up @@ -4,35 +4,31 @@
* you may not use this file except in compliance with the Elastic License.
*/

#ifndef INCLUDED_ml_maths_CTrendTests_h
#define INCLUDED_ml_maths_CTrendTests_h
#ifndef INCLUDED_ml_maths_CRandomizedPeriodicityTest_h
#define INCLUDED_ml_maths_CRandomizedPeriodicityTest_h

#include <core/CMutex.h>
#include <core/CVectorRange.h>
#include <core/CoreTypes.h>

#include <maths/CBasicStatistics.h>
#include <maths/CCalendarFeature.h>
#include <maths/CLinearAlgebra.h>
#include <maths/CPRNG.h>
#include <maths/CQuantileSketch.h>
#include <maths/CRegression.h>
#include <maths/ImportExport.h>
#include <maths/MathsTypes.h>

#include <boost/circular_buffer.hpp>
#include <boost/container/flat_map.hpp>
#include <boost/random/mersenne_twister.hpp>

#include <atomic>
#include <cstddef>
#include <cstdint>
#include <vector>

#include <stdint.h>

class CTrendTestsTest;
class CRandomizedPeriodicityTestTest;

namespace ml {
namespace core {
class CStatePersistInserter;
class CStateRestoreTraverser;
}
namespace maths {
class CSeasonalTime;

Expand Down Expand Up @@ -93,7 +89,7 @@ class MATHS_EXPORT CRandomizedPeriodicityTest {
static void reset();

//! Get a checksum for this object.
uint64_t checksum(uint64_t seed = 0) const;
std::uint64_t checksum(std::uint64_t seed = 0) const;

private:
using TDoubleVec = std::vector<double>;
Expand Down Expand Up @@ -155,97 +151,9 @@ class MATHS_EXPORT CRandomizedPeriodicityTest {
//! The last time the day projections were updated.
core_t::TTime m_WeekRefreshedProjections;

friend class ::CTrendTestsTest;
};

//! \brief The basic idea of this test is to see if there is stronger
//! than expected temporal correlation between large prediction errors
//! and calendar features.
//!
//! DESCRIPTION:\n
//! This maintains prediction error statistics for a collection of
//! calendar features. These are things like "day of month",
//! ("day of week", "week month") pairs and so on. The test checks to
//! see if the number of large prediction errors is statistically high,
//! i.e. are there many more errors exceeding a specified percentile
//! than one would expect given that this is expected to be binomial.
//! Amongst features with statistically significant frequencies of large
//! errors it returns the feature with the highest mean prediction error.
class MATHS_EXPORT CCalendarCyclicTest {
public:
using TOptionalFeature = boost::optional<CCalendarFeature>;

public:
explicit CCalendarCyclicTest(double decayRate = 0.0);

//! Initialize by reading state from \p traverser.
bool acceptRestoreTraverser(core::CStateRestoreTraverser& traverser);

//! Persist state by passing information to \p inserter.
void acceptPersistInserter(core::CStatePersistInserter& inserter) const;

//! Age the bucket values to account for \p time elapsed time.
void propagateForwardsByTime(double time);

//! Add \p error at \p time.
void add(core_t::TTime time, double error, double weight = 1.0);

//! Check if there are calendar components.
TOptionalFeature test() const;

//! Get a checksum for this object.
uint64_t checksum(uint64_t seed = 0) const;

//! Debug the memory used by this object.
void debugMemoryUsage(core::CMemoryUsage::TMemoryUsagePtr mem) const;

//! Get the memory used by this object.
std::size_t memoryUsage() const;

private:
using TTimeVec = std::vector<core_t::TTime>;
using TUInt32CBuf = boost::circular_buffer<uint32_t>;
using TTimeFloatPr = std::pair<core_t::TTime, CFloatStorage>;
using TTimeFloatFMap = boost::container::flat_map<core_t::TTime, CFloatStorage>;

private:
//! Winsorise \p error.
double winsorise(double error) const;

//! Get the significance of \p x large errors given \p n samples.
double significance(double n, double x) const;

private:
//! The error bucketing interval.
static const core_t::TTime BUCKET;
//! The window length in buckets.
static const core_t::TTime WINDOW;
//! The percentile of a large error.
static const double LARGE_ERROR_PERCENTILE;
//! The minimum number of repeats for a testable feature.
static const unsigned int MINIMUM_REPEATS;
//! The bits used to count added values.
static const uint32_t COUNT_BITS;
//! The offsets that are used for different timezone offsets.
static const TTimeVec TIMEZONE_OFFSETS;

private:
//! The rate at which the error counts are aged.
double m_DecayRate;

//! The time of the last error added.
core_t::TTime m_Bucket;

//! Used to estimate large error thresholds.
CQuantileSketch m_ErrorQuantiles;

//! The counts of errors and large errors in a sliding window.
TUInt32CBuf m_ErrorCounts;

//! The bucket large error sums.
TTimeFloatFMap m_ErrorSums;
friend class ::CRandomizedPeriodicityTestTest;
};
}
}

#endif // INCLUDED_ml_maths_CTrendTests_h
#endif // INCLUDED_ml_maths_CRandomizedPeriodicityTest_h
2 changes: 1 addition & 1 deletion include/maths/CTimeSeriesDecompositionDetail.h
Original file line number Diff line number Diff line change
Expand Up @@ -12,13 +12,13 @@
#include <core/CoreTypes.h>

#include <maths/CCalendarComponent.h>
#include <maths/CCalendarCyclicTest.h>
#include <maths/CExpandingWindow.h>
#include <maths/CPeriodicityHypothesisTests.h>
#include <maths/CSeasonalComponent.h>
#include <maths/CSeasonalTime.h>
#include <maths/CTimeSeriesDecompositionInterface.h>
#include <maths/CTrendComponent.h>
#include <maths/CTrendTests.h>
#include <maths/ImportExport.h>

#include <boost/ref.hpp>
Expand Down
12 changes: 6 additions & 6 deletions lib/api/unittest/CAnomalyJobLimitTest.cc
Original file line number Diff line number Diff line change
Expand Up @@ -374,7 +374,7 @@ void CAnomalyJobLimitTest::testModelledEntityCountForFixedMemoryLimit() {
LOG_DEBUG(<< "Processed " << std::floor(100.0 * progress) << "%");
reportProgress += 0.1;
}
for (std::size_t i = 0; i < 1000; ++i) {
for (std::size_t i = 0; i < 900; ++i) {
rng.generateUniformSamples(0, generators.size(), 1, generator);
TOptionalDouble value{generators[generator[0]](time)};
if (value) {
Expand All @@ -392,10 +392,10 @@ void CAnomalyJobLimitTest::testModelledEntityCountForFixedMemoryLimit() {
LOG_DEBUG(<< "Memory status = " << used.s_MemoryStatus);
LOG_DEBUG(<< "Memory usage bytes = " << used.s_Usage);
LOG_DEBUG(<< "Memory limit bytes = " << memoryLimit * 1024 * 1024);
CPPUNIT_ASSERT(used.s_ByFields > 600 && used.s_ByFields < 800);
CPPUNIT_ASSERT(used.s_ByFields > 650 && used.s_ByFields < 850);
CPPUNIT_ASSERT_EQUAL(std::size_t(2), used.s_PartitionFields);
CPPUNIT_ASSERT_DOUBLES_EQUAL(memoryLimit * 1024 * 1024 / 2, used.s_Usage,
memoryLimit * 1024 * 1024 / 40); // Within 5%.
memoryLimit * 1024 * 1024 / 33); // Within 6%.
}

LOG_DEBUG(<< "**** Test partition ****");
Expand All @@ -421,7 +421,7 @@ void CAnomalyJobLimitTest::testModelledEntityCountForFixedMemoryLimit() {
LOG_DEBUG(<< "Processed " << std::floor(100.0 * progress) << "%");
reportProgress += 0.1;
}
for (std::size_t i = 0; i < 600; ++i) {
for (std::size_t i = 0; i < 500; ++i) {
rng.generateUniformSamples(0, generators.size(), 1, generator);
TOptionalDouble value{generators[generator[0]](time)};
if (value) {
Expand All @@ -438,7 +438,7 @@ void CAnomalyJobLimitTest::testModelledEntityCountForFixedMemoryLimit() {
LOG_DEBUG(<< "# partition = " << used.s_PartitionFields);
LOG_DEBUG(<< "Memory status = " << used.s_MemoryStatus);
LOG_DEBUG(<< "Memory usage = " << used.s_Usage);
CPPUNIT_ASSERT(used.s_PartitionFields > 350 && used.s_PartitionFields < 450);
CPPUNIT_ASSERT(used.s_PartitionFields > 370 && used.s_PartitionFields < 470);
CPPUNIT_ASSERT(static_cast<double>(used.s_ByFields) >
0.97 * static_cast<double>(used.s_PartitionFields));
CPPUNIT_ASSERT_DOUBLES_EQUAL(memoryLimit * 1024 * 1024 / 2, used.s_Usage,
Expand Down Expand Up @@ -468,7 +468,7 @@ void CAnomalyJobLimitTest::testModelledEntityCountForFixedMemoryLimit() {
LOG_DEBUG(<< "Processed " << std::floor(100.0 * progress) << "%");
reportProgress += 0.1;
}
for (std::size_t i = 0; i < 12000; ++i) {
for (std::size_t i = 0; i < 9000; ++i) {
TOptionalDouble value{sparse(time)};
if (value) {
dataRows["time"] = core::CStringUtils::typeToString(time);
Expand Down
Loading