Skip to content

Python library designed to revolutionize machine learning workflows by automating data preprocessing, tensor optimization, and model selection.

Notifications You must be signed in to change notification settings

elprofesoriqo/ml-optimizer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ML Optimizer: Intelligent Data Processing and Machine Learning Model Optimizer

🚀 Project Overview

ML Optimizer is an innovative Python library designed to revolutionize machine learning workflows by automating data preprocessing, tensor optimization, and model selection.

🎯 Key Features

  • Universal Data Processing: Supports multiple input formats
  • Intelligent Tensor Compression: Advanced compression techniques
  • Adaptive Model Selection: Automatic model architecture recommendation
  • Performance Optimization: Resource-efficient machine learning pipeline

📦 Installation

# Clone the repository
git clone https://github.com/your-username/ml-optimizer.git

# Install dependencies
pip install -r requirements.txt

# Install the package
pip install .

from ml_optimizer import MLOptimizer

# Load your data from any source
data = load_your_data()  # Supports various input types

# Initialize the optimizer
optimizer = MLOptimizer(verbose=True)

# Automatic data and model optimization
result = optimizer.optimize_pipeline(data)

# Analyze performance
optimizer.analyze_performance(result)

🛠 Quick Start

pythonCopyfrom ml_optimizer import MLOptimizer

# Load your data from any source
data = load_your_data()  # Supports various input types

# Initialize the optimizer
optimizer = MLOptimizer(verbose=True)

# Automatic data and model optimization
result = optimizer.optimize_pipeline(data)

# Analyze performance
optimizer.analyze_performance(result)

🧠 Core Components

1. Data Processing Module

  • Supports multiple input formats
  • Automatic data normalization
  • Multi-layer data validation

2. Tensor Compression Module

  • Quantization techniques
  • Dimensionality reduction
  • Irrelevant feature elimination

3. Model Selection Module

  • Architecture selection heuristics
  • Adaptive hyperparameter tuning
  • Data characteristic analysis

🔍 Supported Input Types

  • PyTorch Tensors
  • NumPy Arrays
  • CSV files
  • JSON
  • Image files
  • Audio data
  • Sequential data

🖥 System Requirements

  • Python 3.9+
  • PyTorch 1.10+
  • Minimum 8 GB RAM
  • Optional: CUDA-enabled GPU

📊 Performance Metrics

The library aims to:

  • Reduce data preprocessing time by up to 50%
  • Minimize computational resource usage
  • Improve model selection accuracy

💡 Future Enhancements

  • Federated learning support
  • Cloud ML service integration
  • Automated hyperparameter optimization
  • Web visualization interface

🌟 Support

If you find this project useful, please consider:

  • ⭐ Starring the repository
  • 🍴 Forking the project
  • 💡 Contributing to the development

About

Python library designed to revolutionize machine learning workflows by automating data preprocessing, tensor optimization, and model selection.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages