ML Optimizer is an innovative Python library designed to revolutionize machine learning workflows by automating data preprocessing, tensor optimization, and model selection.
- Universal Data Processing: Supports multiple input formats
- Intelligent Tensor Compression: Advanced compression techniques
- Adaptive Model Selection: Automatic model architecture recommendation
- Performance Optimization: Resource-efficient machine learning pipeline
# Clone the repository
git clone https://github.com/your-username/ml-optimizer.git
# Install dependencies
pip install -r requirements.txt
# Install the package
pip install .
from ml_optimizer import MLOptimizer
# Load your data from any source
data = load_your_data() # Supports various input types
# Initialize the optimizer
optimizer = MLOptimizer(verbose=True)
# Automatic data and model optimization
result = optimizer.optimize_pipeline(data)
# Analyze performance
optimizer.analyze_performance(result)
🛠 Quick Start
pythonCopyfrom ml_optimizer import MLOptimizer
# Load your data from any source
data = load_your_data() # Supports various input types
# Initialize the optimizer
optimizer = MLOptimizer(verbose=True)
# Automatic data and model optimization
result = optimizer.optimize_pipeline(data)
# Analyze performance
optimizer.analyze_performance(result)
- Supports multiple input formats
- Automatic data normalization
- Multi-layer data validation
- Quantization techniques
- Dimensionality reduction
- Irrelevant feature elimination
- Architecture selection heuristics
- Adaptive hyperparameter tuning
- Data characteristic analysis
- PyTorch Tensors
- NumPy Arrays
- CSV files
- JSON
- Image files
- Audio data
- Sequential data
- Python 3.9+
- PyTorch 1.10+
- Minimum 8 GB RAM
- Optional: CUDA-enabled GPU
The library aims to:
- Reduce data preprocessing time by up to 50%
- Minimize computational resource usage
- Improve model selection accuracy
- Federated learning support
- Cloud ML service integration
- Automated hyperparameter optimization
- Web visualization interface
If you find this project useful, please consider:
- ⭐ Starring the repository
- 🍴 Forking the project
- 💡 Contributing to the development