Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add MSMARCO eval split in MTEB English (classic) benchmark #1620

Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
150 changes: 76 additions & 74 deletions mteb/benchmarks/benchmarks.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
from mteb.abstasks.AbsTask import AbsTask
from mteb.load_results.benchmark_results import BenchmarkResults
from mteb.load_results.load_results import load_results
from mteb.overview import get_tasks
from mteb.overview import MTEBTasks, get_tasks

http_url_adapter = TypeAdapter(AnyUrl)
UrlString = Annotated[
Expand Down Expand Up @@ -123,80 +123,82 @@ def load_results(

MTEB_ENG_CLASSIC = Benchmark(
name="MTEB(eng, classic)",
tasks=get_tasks(
tasks=[
"AmazonCounterfactualClassification",
"AmazonPolarityClassification",
"AmazonReviewsClassification",
"ArguAna",
"ArxivClusteringP2P",
"ArxivClusteringS2S",
"AskUbuntuDupQuestions",
"BIOSSES",
"Banking77Classification",
"BiorxivClusteringP2P",
"BiorxivClusteringS2S",
"CQADupstackAndroidRetrieval",
"CQADupstackEnglishRetrieval",
"CQADupstackGamingRetrieval",
"CQADupstackGisRetrieval",
"CQADupstackMathematicaRetrieval",
"CQADupstackPhysicsRetrieval",
"CQADupstackProgrammersRetrieval",
"CQADupstackStatsRetrieval",
"CQADupstackTexRetrieval",
"CQADupstackUnixRetrieval",
"CQADupstackWebmastersRetrieval",
"CQADupstackWordpressRetrieval",
"ClimateFEVER",
"DBPedia",
"EmotionClassification",
"FEVER",
"FiQA2018",
"HotpotQA",
"ImdbClassification",
"MSMARCO",
"MTOPDomainClassification",
"MTOPIntentClassification",
"MassiveIntentClassification",
"MassiveScenarioClassification",
"MedrxivClusteringP2P",
"MedrxivClusteringS2S",
"MindSmallReranking",
"NFCorpus",
"NQ",
"QuoraRetrieval",
"RedditClustering",
"RedditClusteringP2P",
"SCIDOCS",
"SICK-R",
"STS12",
"STS13",
"STS14",
"STS15",
"STS16",
"STS17",
"STS22",
"STSBenchmark",
"SciDocsRR",
"SciFact",
"SprintDuplicateQuestions",
"StackExchangeClustering",
"StackExchangeClusteringP2P",
"StackOverflowDupQuestions",
"SummEval",
"TRECCOVID",
"Touche2020",
"ToxicConversationsClassification",
"TweetSentimentExtractionClassification",
"TwentyNewsgroupsClustering",
"TwitterSemEval2015",
"TwitterURLCorpus",
],
languages=["eng"],
eval_splits=["test"],
tasks=MTEBTasks(
get_tasks(
tasks=[
"AmazonCounterfactualClassification",
"AmazonPolarityClassification",
"AmazonReviewsClassification",
"ArguAna",
"ArxivClusteringP2P",
"ArxivClusteringS2S",
"AskUbuntuDupQuestions",
"BIOSSES",
"Banking77Classification",
"BiorxivClusteringP2P",
"BiorxivClusteringS2S",
"CQADupstackAndroidRetrieval",
"CQADupstackEnglishRetrieval",
"CQADupstackGamingRetrieval",
"CQADupstackGisRetrieval",
"CQADupstackMathematicaRetrieval",
"CQADupstackPhysicsRetrieval",
"CQADupstackProgrammersRetrieval",
"CQADupstackStatsRetrieval",
"CQADupstackTexRetrieval",
"CQADupstackUnixRetrieval",
"CQADupstackWebmastersRetrieval",
"CQADupstackWordpressRetrieval",
"ClimateFEVER",
"DBPedia",
"EmotionClassification",
"FEVER",
"FiQA2018",
"HotpotQA",
"ImdbClassification",
"MTOPDomainClassification",
"MTOPIntentClassification",
"MassiveIntentClassification",
"MassiveScenarioClassification",
"MedrxivClusteringP2P",
"MedrxivClusteringS2S",
"MindSmallReranking",
"NFCorpus",
"NQ",
"QuoraRetrieval",
"RedditClustering",
"RedditClusteringP2P",
"SCIDOCS",
"SICK-R",
"STS12",
"STS13",
"STS14",
"STS15",
"STS16",
"STS17",
"STS22",
"STSBenchmark",
"SciDocsRR",
"SciFact",
"SprintDuplicateQuestions",
"StackExchangeClustering",
"StackExchangeClusteringP2P",
"StackOverflowDupQuestions",
"SummEval",
"TRECCOVID",
"Touche2020",
"ToxicConversationsClassification",
"TweetSentimentExtractionClassification",
"TwentyNewsgroupsClustering",
"TwitterSemEval2015",
"TwitterURLCorpus",
],
languages=["eng"],
eval_splits=["test"],
)
+ get_tasks(tasks=["MSMARCO"], languages=["eng"], eval_splits=["dev"])
),
description="The original English benchmarks by Muennighoff et al., (2023).",
description="The original English benchmark by Muennighoff et al., (2023).",
citation="""@inproceedings{muennighoff-etal-2023-mteb,
title = "{MTEB}: Massive Text Embedding Benchmark",
author = "Muennighoff, Niklas and
Expand Down
Loading