Skip to content

This project contains the analyses of a generic time series. Furthermore we analysed the main methods for forecasting time series.

Notifications You must be signed in to change notification settings

enigarv/Times-Series-Analyses

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 

Repository files navigation

Times Series Analysis

The data refer to hourly measurements of CO covering the period from 10-03-2004 to 28-02-2005. The aim of the project, given a univariate time series relating to hourly measurements of Oxide of Carbon (CO), is to predict the values of CO in the period between 2005-03-01 and 31-03-2005.

Initially the TS is analyzed graphically in order to understand its trend and possible patterns.

Later we study the stationarity of the time series through two statistical tests. The first test used is the Augmented Dickey-Fuller test which confirms the hypothesis that the TS is stationary. The KPSS test also confirmed this hypothesis. It follows that the time series is stationary and does not require differentiation.

Forecast

We explored three different approaches to forecast the time series:

  • ARIMA (and SARIMA),
  • UCM,
  • Machine Learning.

In particolar for the ML approaches we explored different architectures: vanilla LSTM, stacked LSTM, bidirectional LSTM and GRU. We discovered that the last NN was the most efficient.

Result

The performance were compared through the MAPE metric which will be used as a reference to evaluate the performance of the models. The ML model was found to be the best:

Model MAPE
Arima 10,68
UCM 12,19
ML (GRU) 1,8

About

This project contains the analyses of a generic time series. Furthermore we analysed the main methods for forecasting time series.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages