This package contains meteorological data for Vietnam from the Vietnamese Institute of Meteorology, Hydrology and Environment (IMHEN). This is monthly data in 67 climatic stations from January 1960 to December 2015. Climatic variables are min, max, average temperatures, absolute and relative humidities, rainfall and hours of sunshine. |
You can install imhen
from
GitHub
# install.packages("devtools")
devtools::install_github("epix-project/imhen", build_vignettes = TRUE)
Once installed, you can load the package:
library(imhen)
The package contains two dataframes. The first one is meteo
which
contains the climatic variables Tx
, Ta
, Tm
, aH
, rH
, Rf
and
Sh
plus time (year
and month
) and space (station
) information:
head(meteo)
#> year month station Ta Tx Tm Rf aH rH Sh
#> 1 1961 January Bac Kan 13.9 19.1 10.5 5.3 13.1 82 NA
#> 2 1961 February Bac Kan 15.1 18.3 13.2 21.5 14.7 85 NA
#> 3 1961 March Bac Kan 19.6 23.2 17.5 85.4 20.1 87 NA
#> 4 1961 April Bac Kan 23.5 28.1 20.5 185.8 24.8 87 NA
#> 5 1961 May Bac Kan 25.8 31.2 22.1 34.9 27.1 83 NA
#> 6 1961 June Bac Kan 26.9 32.6 23.1 314.7 29.3 83 NA
Note that the data frame is not “complete”, with some combinations of
the year
, month
and station
being missing:
table(with(meteo, table(year, month, station)))
#>
#> 0 1
#> 7980 37848
The second one is stations
which contains the coordinates (longitude
and latitude
) and the elevation
:
head(stations)
#> station elevation latitude geometry
#> 1 Bac Kan 174 22.133333 105.81667, 22.13333
#> 2 Bac Giang 7 21.283333 106.20000, 21.28333
#> 3 Bac Lieu 2 9.283333 105.716667, 9.283333
#> 4 Bac Ninh 5 21.200000 106.05, 21.20
#> 5 Ba Tri 12 10.033333 106.60000, 10.03333
#> 6 Ba Vi 20 21.083333 106.40000, 21.08333
We can transform the climatic stations coordinates into a spatial object:
library(gadmVN)
vietnam <- gadm(level = "country")
coordinates(stations) <- ~ longitude + latitude
proj4string(stations) <- vietnam@proj4string
And plot the stations on the map:
plot(vietnam, col = "grey")
points(stations, col = "blue", pch = 3)
We can also look at the elevations of the climatic stations:
plot(sort(stations$elevation, TRUE), type = "o",
xlab = "stations ranked by decreasing elevation", ylab = "elevation (m)")
Let’s look at the temperatures:
val <- c("Tm", "Ta", "Tx")
T_range <- range(meteo[, val], na.rm = TRUE)
breaks <- seq(floor(T_range[1]), ceiling(T_range[2]), 2)
par(mfrow = c(1, 3))
for(i in val)
hist(meteo[[i]], breaks, ann = FALSE, col = "lightgrey", ylim = c(0, 10500))
Looks good. Let’s check the consistency of the values:
for(i in val) print(range(meteo[[i]], na.rm = TRUE))
#> [1] -9.256667 29.900000
#> [1] 0.0 35.8
#> [1] 5.7 39.3
with(meteo, any(!((Tm <= Ta) & (Ta <= Tx)), na.rm = TRUE))
#> [1] FALSE
Let’s look at the other variables:
val <- c("aH", "rH", "Rf", "Sh")
par(mfrow = c(2, 2))
for(i in val) hist(meteo[[i]], col = "lightgrey", ann = FALSE)
Looks good too.
for(i in val) print(range(meteo[[i]], na.rm = TRUE))
#> [1] 2.9 39.9
#> [1] 49 100
#> [1] 0.0 2451.7
#> [1] 0 674
Let’s first Make a year
, month
, station
template for a full design
of the data:
y <- sort(unique(meteo$year))
m <- factor(levels(meteo$month), levels(meteo$month), ordered = TRUE)
s <- stations$station[order(coordinates(stations)[, "latitude"])]
s <- factor(s, s, ordered = TRUE)
template <- setNames(expand.grid(y, m, s), c("year", "month", "station"))
attr(template, "out.attrs") <- NULL # removing useless attributes
The full version of the data:
meteo_full <- merge(template, meteo, all.x = TRUE)
Let’s visualize it:
x <- as.Date(with(unique(meteo_full[, c("year", "month")]),
paste0(year, "-", as.numeric(month), "-15")))
y <- seq_along(stations)
nb <- length(y)
col <- rev(heat.colors(12))
show_data <- function(var) {
image(x, y, t(matrix(meteo_full[[var]], nb)), col = col,
xlab = NA, ylab = "climatic stations")
box(bty = "o")
}
Missings values for all the temperature variables:
opar <- par(mfrow = c(2, 2))
for(i in c("Tx", "Ta", "Tm")) show_data(i)
par(opar)
Showing very well the higher seasonality in the north than in the south. Missing values for the absolute and relative humidities as well as for rainfall and hours of sunshine:
opar <- par(mfrow = c(2, 2))
for(i in c("aH", "rH", "Rf", "Sh")) show_data(i)
par(opar)
Showing strong seasonality of absolute humidity in the north of the country, interesting pattern of relative humidity in the center of the country, high rainfalls in the fall in the center of the country, and out-of-phase oscillations of the number of hours of sunshine between the north and the south of the country. It seems though that there are strange outliers in sunshine in the north in 2008 or so. Let’s now combine the missing values from all the climatic variables:
library(magrittr)
library(dplyr)
meteo_full %<>% mutate(combined = is.na(Tx + Ta + Tm + aH + rH + Rf + Sh))
show_data("combined")
abline(v = as.Date("1995-01-01"))
The locations of the 6 stations with missing value in the recent year are:
subset(meteo_full, year > 1994 & combined, station, TRUE) %>% unique
- pairwise distances
- time series (trends seasonalities)
- time seasonal variation
- PCA?