Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Ensure non-existent gen_kw does not error in dark_storage #8956

Merged
merged 2 commits into from
Oct 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/ert/dark_storage/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -157,7 +157,7 @@ def data_for_key(
dataframe.index.name = "Realization"

data = dataframe.sort_index(axis=1)
if data.empty:
if data.empty or key not in data:
return pd.DataFrame()
data = data[key].to_frame().dropna()
data.columns = pd.Index([0])
Expand Down
231 changes: 131 additions & 100 deletions tests/ert/unit_tests/gui/tools/plot/test_plot_api.py
Original file line number Diff line number Diff line change
Expand Up @@ -176,110 +176,141 @@ def test_plot_api_request_errors(api):
api.data_for_key(ensemble.id, "should_not_be_there")


def test_plot_api_handles_urlescape(tmp_path, monkeypatch):
@pytest.fixture
def api_and_storage(monkeypatch, tmp_path):
with open_storage(tmp_path / "storage", mode="w") as storage:
monkeypatch.setenv("ERT_STORAGE_NO_TOKEN", "yup")
monkeypatch.setenv("ERT_STORAGE_ENS_PATH", storage.path)
api = PlotApi()
key = "WBHP:46/3-7S"
date = datetime(year=2024, month=10, day=4)
experiment = storage.create_experiment(
parameters=[],
responses=[
SummaryConfig(
name="summary",
input_files=["CASE.UNSMRY", "CASE.SMSPEC"],
keys=[key],
)
],
observations={
"summary": polars.DataFrame(
{
"response_key": key,
"observation_key": "sumobs",
"time": polars.Series([date]).dt.cast_time_unit("ms"),
"observations": polars.Series([1.0], dtype=polars.Float32),
"std": polars.Series([1.0], dtype=polars.Float32),
}
)
},
)
ensemble = experiment.create_ensemble(ensemble_size=1, name="ensemble")
assert api.data_for_key(str(ensemble.id), key).empty
df = polars.DataFrame(
{
"response_key": [key],
"time": [polars.Series([date]).dt.cast_time_unit("ms")],
"values": [polars.Series([1.0], dtype=polars.Float32)],
}
)
df = df.explode("values", "time")
ensemble.save_response(
"summary",
df,
0,
)
assert api.data_for_key(str(ensemble.id), key).to_csv() == dedent(
"""\
Realization,2024-10-04
0,1.0
"""
)
assert api.observations_for_key([str(ensemble.id)], key).to_csv() == dedent(
"""\
,0
STD,1.0
OBS,1.0
key_index,2024-10-04 00:00:00
"""
)
if enkf._storage is not None:
enkf._storage.close()
enkf._storage = None
gc.collect()


def test_plot_api_handles_empty_gen_kw(tmp_path, monkeypatch):
with open_storage(tmp_path / "storage", mode="w") as storage:
monkeypatch.setenv("ERT_STORAGE_NO_TOKEN", "yup")
monkeypatch.setenv("ERT_STORAGE_ENS_PATH", storage.path)
api = PlotApi()
key = "gen_kw"
name = "<poro>"
experiment = storage.create_experiment(
parameters=[
GenKwConfig(
name=key,
forward_init=False,
update=False,
template_file=None,
output_file=None,
transform_function_definitions=[],
),
],
responses=[],
observations={},
)
ensemble = storage.create_ensemble(experiment.id, ensemble_size=10)
assert api.data_for_key(str(ensemble.id), key).empty
ensemble.save_parameters(
key,
1,
xr.Dataset(
yield api, storage
if enkf._storage is not None:
enkf._storage.close()
enkf._storage = None
gc.collect()


def test_plot_api_handles_urlescape(api_and_storage):
api, storage = api_and_storage
key = "WBHP:46/3-7S"
date = datetime(year=2024, month=10, day=4)
experiment = storage.create_experiment(
parameters=[],
responses=[
SummaryConfig(
name="summary",
input_files=["CASE.UNSMRY", "CASE.SMSPEC"],
keys=[key],
)
],
observations={
"summary": polars.DataFrame(
{
"values": ("names", [1.0]),
"transformed_values": ("names", [1.0]),
"names": [name],
"response_key": key,
"observation_key": "sumobs",
"time": polars.Series([date]).dt.cast_time_unit("ms"),
"observations": polars.Series([1.0], dtype=polars.Float32),
"std": polars.Series([1.0], dtype=polars.Float32),
}
)
},
)
ensemble = experiment.create_ensemble(ensemble_size=1, name="ensemble")
assert api.data_for_key(str(ensemble.id), key).empty
df = polars.DataFrame(
{
"response_key": [key],
"time": [polars.Series([date]).dt.cast_time_unit("ms")],
"values": [polars.Series([1.0], dtype=polars.Float32)],
}
)
df = df.explode("values", "time")
ensemble.save_response(
"summary",
df,
0,
)
assert api.data_for_key(str(ensemble.id), key).to_csv() == dedent(
"""\
Realization,2024-10-04
0,1.0
"""
)
assert api.observations_for_key([str(ensemble.id)], key).to_csv() == dedent(
"""\
,0
STD,1.0
OBS,1.0
key_index,2024-10-04 00:00:00
"""
)


def test_plot_api_handles_empty_gen_kw(api_and_storage):
api, storage = api_and_storage
key = "gen_kw"
name = "<poro>"
experiment = storage.create_experiment(
parameters=[
GenKwConfig(
name=key,
forward_init=False,
update=False,
template_file=None,
output_file=None,
transform_function_definitions=[],
),
],
responses=[],
observations={},
)
ensemble = storage.create_ensemble(experiment.id, ensemble_size=10)
assert api.data_for_key(str(ensemble.id), key).empty
ensemble.save_parameters(
key,
1,
xr.Dataset(
{
"values": ("names", [1.0]),
"transformed_values": ("names", [1.0]),
"names": [name],
}
),
)
assert api.data_for_key(str(ensemble.id), key + ":" + name).to_csv() == dedent(
"""\
Realization,0
1,1.0
"""
)


def test_plot_api_handles_non_existant_gen_kw(api_and_storage):
api, storage = api_and_storage
experiment = storage.create_experiment(
parameters=[
GenKwConfig(
name="gen_kw",
forward_init=False,
update=False,
template_file=None,
output_file=None,
transform_function_definitions=[],
),
)
assert api.data_for_key(str(ensemble.id), key + ":" + name).to_csv() == dedent(
"""\
Realization,0
1,1.0
"""
)
if enkf._storage is not None:
enkf._storage.close()
enkf._storage = None
gc.collect()
],
responses=[],
observations={},
)
ensemble = storage.create_ensemble(experiment.id, ensemble_size=10)
ensemble.save_parameters(
"gen_kw",
1,
xr.Dataset(
{
"values": ("names", [1.0]),
"transformed_values": ("names", [1.0]),
"names": ["key"],
}
),
)
assert api.data_for_key(str(ensemble.id), "gen_kw").empty
assert api.data_for_key(str(ensemble.id), "gen_kw:does_not_exist").empty