Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

solve speed method for compressor #1192

Merged
merged 3 commits into from
Nov 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
209 changes: 153 additions & 56 deletions src/main/java/neqsim/process/equipment/compressor/Compressor.java
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,7 @@ public class Compressor extends TwoPortEquipment implements CompressorInterface
private CompressorPropertyProfile propertyProfile = new CompressorPropertyProfile();
public double dH = 0.0;
public double inletEnthalpy = 0;
private boolean solveSpeed = false;
public double pressure = 0.0;
private double speed = 3000;
private double maxspeed = 30000;
Expand Down Expand Up @@ -406,67 +407,155 @@ public void run(UUID id) {
}
}
if (compressorChart.isUseCompressorChart()) {
do {
double actualFlowRate = thermoSystem.getFlowRate("m3/hr");
double z_inlet = thermoSystem.getZ();
double MW = thermoSystem.getMolarMass();
if (solveSpeed) {
double targetPressure = getOutletPressure(); // Desired outlet pressure
double tolerance = 1e-3; // Tolerance for pressure difference
double minSpeed = getMinimumSpeed(); // Minimum speed for the compressor
double maxSpeed = getMaximumSpeed(); // Maximum speed for the compressor
double currentSpeed = getSpeed(); // Initial guess for speed
double maxIterations = 100; // Maximum number of iterations
double deltaSpeed = 100.0; // Small increment for numerical derivative
int iteration = 0;

while (iteration < maxIterations) {
// Calculate the pressure at the current speed
double actualFlowRate = thermoSystem.getFlowRate("m3/hr");
double z_inlet = thermoSystem.getZ();
double MW = thermoSystem.getMolarMass();
if (getCompressorChart().useRealKappa()) {
kappa = thermoSystem.getGamma();
} else {
kappa = thermoSystem.getGamma2();
}

if (getCompressorChart().useRealKappa()) {
kappa = thermoSystem.getGamma();
} else {
kappa = thermoSystem.getGamma2();
}
if (useGERG2008 && inStream.getThermoSystem().getNumberOfPhases() == 1) {
double[] gergProps;
gergProps = getThermoSystem().getPhase(0).getProperties_GERG2008();
actualFlowRate *= gergProps[1] / z_inlet;
kappa = gergProps[14];
z_inlet = gergProps[1];
}
if (useGERG2008 && inStream.getThermoSystem().getNumberOfPhases() == 1) {
double[] gergProps = getThermoSystem().getPhase(0).getProperties_GERG2008();
actualFlowRate *= gergProps[1] / z_inlet;
kappa = gergProps[14];
z_inlet = gergProps[1];
}

double polytropEff =
getCompressorChart().getPolytropicEfficiency(actualFlowRate, getSpeed());
setPolytropicEfficiency(polytropEff / 100.0);
polytropicHead = getCompressorChart().getPolytropicHead(actualFlowRate, getSpeed());
double temperature_inlet = thermoSystem.getTemperature();
double n = 1.0 / (1.0 - (kappa - 1.0) / kappa * 1.0 / (polytropEff / 100.0));
polytropicExponent = n;
if (getCompressorChart().getHeadUnit().equals("meter")) {
polytropicFluidHead = polytropicHead / 1000.0 * 9.81;
polytropicHeadMeter = polytropicHead;
} else {
polytropicFluidHead = polytropicHead;
polytropicHeadMeter = polytropicHead * 1000.0 / 9.81;
}
double pressureRatio = Math.pow((polytropicFluidHead * 1000.0 + (n / (n - 1.0) * z_inlet
* ThermodynamicConstantsInterface.R * (temperature_inlet) / MW))
/ (n / (n - 1.0) * z_inlet * ThermodynamicConstantsInterface.R * (temperature_inlet)
/ MW),
n / (n - 1.0));
setOutletPressure(thermoSystem.getPressure() * pressureRatio);
if (getAntiSurge().isActive()) {
logger.info("surge flow "
+ getCompressorChart().getSurgeCurve().getSurgeFlow(polytropicHead) + " m3/hr");
surgeCheck = isSurge(polytropicHead, actualFlowRate);
}
if (getCompressorChart().getStoneWallCurve().isActive()) {
// logger.info("stone wall? " + isStoneWall(polytropicHead,
// thermoSystem.getFlowRate("m3/hr")));
double polytropEff =
getCompressorChart().getPolytropicEfficiency(actualFlowRate, currentSpeed);
setPolytropicEfficiency(polytropEff / 100.0);
polytropicHead = getCompressorChart().getPolytropicHead(actualFlowRate, currentSpeed);
double temperature_inlet = thermoSystem.getTemperature();
double n = 1.0 / (1.0 - (kappa - 1.0) / kappa * 1.0 / (polytropEff / 100.0));
double polytropicFluidHead =
(getCompressorChart().getHeadUnit().equals("meter")) ? polytropicHead / 1000.0 * 9.81
: polytropicHead;
double pressureRatio = Math.pow((polytropicFluidHead * 1000.0 + (n / (n - 1.0) * z_inlet
* ThermodynamicConstantsInterface.R * (temperature_inlet) / MW))
/ (n / (n - 1.0) * z_inlet * ThermodynamicConstantsInterface.R * (temperature_inlet)
/ MW),
n / (n - 1.0));
double currentPressure = thermoSystem.getPressure() * pressureRatio;

// Calculate the derivative of pressure with respect to speed
double polytropEffDelta = getCompressorChart().getPolytropicEfficiency(actualFlowRate,
currentSpeed + deltaSpeed);
double polytropicHeadDelta =
getCompressorChart().getPolytropicHead(actualFlowRate, currentSpeed + deltaSpeed);
double nDelta = 1.0 / (1.0 - (kappa - 1.0) / kappa * 1.0 / (polytropEffDelta / 100.0));
double polytropicFluidHeadDelta = (getCompressorChart().getHeadUnit().equals("meter"))
? polytropicHeadDelta / 1000.0 * 9.81
: polytropicHeadDelta;
double pressureRatioDelta =
Math.pow((polytropicFluidHeadDelta * 1000.0 + (nDelta / (nDelta - 1.0) * z_inlet
* ThermodynamicConstantsInterface.R * (temperature_inlet) / MW))
/ (nDelta / (nDelta - 1.0) * z_inlet * ThermodynamicConstantsInterface.R
* (temperature_inlet) / MW),
nDelta / (nDelta - 1.0));
double pressureDelta = thermoSystem.getPressure() * pressureRatioDelta;

double dPressure_dSpeed = (pressureDelta - currentPressure) / deltaSpeed;

// Update speed using Newton-Raphson method
double speedUpdate = (targetPressure - currentPressure) / dPressure_dSpeed;
currentSpeed += 0.8 * speedUpdate;

// Check if speed is within bounds
if (currentSpeed < minSpeed || currentSpeed > maxSpeed) {
throw new IllegalArgumentException(
"Speed out of bounds during Newton-Raphson iteration.");
}

// Check for convergence
if (Math.abs(currentPressure - targetPressure) <= tolerance) {
setSpeed(currentSpeed); // Update the final speed
break;
}

iteration++;
}
if (surgeCheck && getAntiSurge().isActive()) {
thermoSystem.setTotalFlowRate(
getAntiSurge().getSurgeControlFactor()
* getCompressorChart().getSurgeCurve().getSurgeFlow(polytropicFluidHead),
"Am3/hr");
thermoSystem.init(3);
fractionAntiSurge = thermoSystem.getTotalNumberOfMoles() / orginalMolarFLow - 1.0;
getAntiSurge().setCurrentSurgeFraction(fractionAntiSurge);

if (iteration == maxIterations) {
throw new RuntimeException(
"Newton-Raphson method did not converge within the maximum iterations.");
}
} else {
do {
double actualFlowRate = thermoSystem.getFlowRate("m3/hr");
double z_inlet = thermoSystem.getZ();
double MW = thermoSystem.getMolarMass();

powerSet = true;
dH = polytropicFluidHead * 1000.0 * thermoSystem.getMolarMass() / getPolytropicEfficiency()
* thermoSystem.getTotalNumberOfMoles();
} while (surgeCheck && getAntiSurge().isActive());
if (getCompressorChart().useRealKappa()) {
kappa = thermoSystem.getGamma();
} else {
kappa = thermoSystem.getGamma2();
}
if (useGERG2008 && inStream.getThermoSystem().getNumberOfPhases() == 1) {
double[] gergProps;
gergProps = getThermoSystem().getPhase(0).getProperties_GERG2008();
actualFlowRate *= gergProps[1] / z_inlet;
kappa = gergProps[14];
z_inlet = gergProps[1];
}

double polytropEff =
getCompressorChart().getPolytropicEfficiency(actualFlowRate, getSpeed());
setPolytropicEfficiency(polytropEff / 100.0);
polytropicHead = getCompressorChart().getPolytropicHead(actualFlowRate, getSpeed());
double temperature_inlet = thermoSystem.getTemperature();
double n = 1.0 / (1.0 - (kappa - 1.0) / kappa * 1.0 / (polytropEff / 100.0));
polytropicExponent = n;
if (getCompressorChart().getHeadUnit().equals("meter")) {
polytropicFluidHead = polytropicHead / 1000.0 * 9.81;
polytropicHeadMeter = polytropicHead;
} else {
polytropicFluidHead = polytropicHead;
polytropicHeadMeter = polytropicHead * 1000.0 / 9.81;
}
double pressureRatio = Math.pow((polytropicFluidHead * 1000.0 + (n / (n - 1.0) * z_inlet
* ThermodynamicConstantsInterface.R * (temperature_inlet) / MW))
/ (n / (n - 1.0) * z_inlet * ThermodynamicConstantsInterface.R * (temperature_inlet)
/ MW),
n / (n - 1.0));
setOutletPressure(thermoSystem.getPressure() * pressureRatio);
if (getAntiSurge().isActive()) {
logger.info("surge flow "
+ getCompressorChart().getSurgeCurve().getSurgeFlow(polytropicHead) + " m3/hr");
surgeCheck = isSurge(polytropicHead, actualFlowRate);
}
if (getCompressorChart().getStoneWallCurve().isActive()) {
// logger.info("stone wall? " + isStoneWall(polytropicHead,
// thermoSystem.getFlowRate("m3/hr")));
}
if (surgeCheck && getAntiSurge().isActive()) {
thermoSystem.setTotalFlowRate(
getAntiSurge().getSurgeControlFactor()
* getCompressorChart().getSurgeCurve().getSurgeFlow(polytropicFluidHead),
"Am3/hr");
thermoSystem.init(3);
fractionAntiSurge = thermoSystem.getTotalNumberOfMoles() / orginalMolarFLow - 1.0;
getAntiSurge().setCurrentSurgeFraction(fractionAntiSurge);
}

powerSet = true;
dH = polytropicFluidHead * 1000.0 * thermoSystem.getMolarMass()
/ getPolytropicEfficiency() * thermoSystem.getTotalNumberOfMoles();
} while (surgeCheck && getAntiSurge().isActive());
}
}

if (usePolytropicCalc) {
Expand Down Expand Up @@ -1484,4 +1573,12 @@ public void setCompressorChartType(String type) {
compressorChart = new CompressorChart();
}
}

public boolean isSolveSpeed() {
return solveSpeed;
}

public void setSolveSpeed(boolean solveSpeed) {
this.solveSpeed = solveSpeed;
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -279,4 +279,109 @@ public void runCurveTest() {
Assertions.assertEquals(158.7732888, comp1.getOutletPressure(), 1e-3);
}

@Test
public void runCurveTest2() {
SystemInterface testFluid = new SystemPrEos(273.15 + 29.96, 75.73);

testFluid.addComponent("nitrogen", 0.7823);
testFluid.addComponent("CO2", 1.245);
testFluid.addComponent("methane", 88.4681);
testFluid.addComponent("ethane", 4.7652);
testFluid.addComponent("propane", 2.3669);
testFluid.addComponent("i-butane", 0.3848);
testFluid.addComponent("n-butane", 0.873);
testFluid.setMixingRule("classic");

Stream stream_1 = new Stream("Stream1", testFluid);
stream_1.setTemperature(29.96, "C");
stream_1.setPressure(75.73, "bara");
stream_1.setFlowRate(559401.4, "kg/hr");
stream_1.run();

Compressor comp1 = new Compressor("compressor 1", stream_1);
comp1.setCompressorChartType("interpolate and extrapolate");
comp1.setUsePolytropicCalc(true);
comp1.setPolytropicEfficiency(0.85);
comp1.setSpeed(9000);
double[] chartConditions = new double[] {0.3, 1.0, 1.0, 1.0};

double[] speed = new double[] {7000, 7500, 8000, 8500, 9000, 9500, 9659, 10000, 10500};

double[][] flow = new double[][] {{4512.7, 5120.8, 5760.9, 6401, 6868.27},
{4862.47, 5486.57, 6172.39, 6858.21, 7550.89},
{5237.84, 5852.34, 6583.88, 7315.43, 8046.97, 8266.43},
{5642.94, 6218.11, 6995.38, 7772.64, 8549.9, 9000.72},
{6221.77, 6583.88, 7406.87, 8229.85, 9052.84, 9768.84},
{6888.85, 6949.65, 7818.36, 8687.07, 9555.77, 10424.5, 10546.1},
{7109.83, 7948.87, 8832.08, 9715.29, 10598.5, 10801.6},
{7598.9, 8229.85, 9144.28, 10058.7, 10973.1, 11338.9},
{8334.1, 8641.35, 9601.5, 10561.6, 11521.8, 11963.5}};

double[][] head = new double[][] {{61.885, 59.639, 56.433, 52.481, 49.132},
{71.416, 69.079, 65.589, 61.216, 55.858}, {81.621, 79.311, 75.545, 70.727, 64.867, 62.879,},
{92.493, 90.312, 86.3, 81.079, 74.658, 70.216},
{103.512, 102.073, 97.83, 92.254, 85.292, 77.638},
{114.891, 114.632, 110.169, 104.221, 96.727, 87.002, 85.262},
{118.595, 114.252, 108.203, 100.55, 90.532, 87.54},
{126.747, 123.376, 117.113, 109.056, 98.369, 92.632},
{139.082, 137.398, 130.867, 122.264, 110.548, 103.247},};
double[][] polyEff = new double[][] {{78.3, 78.2, 77.2, 75.4, 73.4},

{78.3, 78.3, 77.5, 75.8, 73}, {78.2, 78.4, 77.7, 76.1, 73.5, 72.5},
{78.2, 78.4, 77.9, 76.4, 74, 71.9}, {78.3, 78.4, 78, 76.7, 74.5, 71.2},
{78.3, 78.4, 78.1, 77, 74.9, 71.3, 70.5}, {78.4, 78.1, 77.1, 75, 71.4, 70.2},
{78.3, 78.2, 77.2, 75.2, 71.7, 69.5}, {78.2, 78.2, 77.3, 75.5, 72.2, 69.6}};

comp1.getCompressorChart().setCurves(chartConditions, speed, flow, head, polyEff);
comp1.getCompressorChart().setHeadUnit("kJ/kg");

double[] surgeflow =
new double[] {4512.7, 4862.47, 5237.84, 5642.94, 6221.77, 6888.85, 7109.83, 7598.9};
double[] surgehead =
new double[] {61.885, 71.416, 81.621, 92.493, 103.512, 114.891, 118.595, 126.747};
comp1.getCompressorChart().getSurgeCurve().setCurve(chartConditions, surgeflow, surgehead);
// comp1.getAntiSurge().setActive(true);
comp1.getAntiSurge().setSurgeControlFactor(1.0);
comp1.getCompressorChart().setUseCompressorChart(true);
comp1.setOutletPressure(220.0, "bara");
comp1.setSolveSpeed(true);
comp1.run();

org.apache.logging.log4j.LogManager.getLogger(CompressorChartTest.class)
.debug("feed flow " + (comp1.getInletStream().getFlowRate("m3/hr")));
org.apache.logging.log4j.LogManager.getLogger(CompressorChartTest.class)
.debug("out pressure " + (comp1.getOutletStream().getPressure("bara")));
org.apache.logging.log4j.LogManager.getLogger(CompressorChartTest.class)
.debug("power " + comp1.getPower("MW"));
org.apache.logging.log4j.LogManager.getLogger(CompressorChartTest.class)
.debug("polytropic head " + comp1.getPolytropicFluidHead());
org.apache.logging.log4j.LogManager.getLogger(CompressorChartTest.class)
.debug("polytropic efficiency " + comp1.getPolytropicEfficiency());
org.apache.logging.log4j.LogManager.getLogger(CompressorChartTest.class)
.debug("speed " + comp1.getSpeed());

stream_1.setFlowRate(309401.4, "kg/hr");
stream_1.run();
comp1.setOutletPressure(170.0, "bara");
comp1.run();
org.apache.logging.log4j.LogManager.getLogger(CompressorChartTest.class)
.debug("feed flow " + (comp1.getInletStream().getFlowRate("m3/hr")));
org.apache.logging.log4j.LogManager.getLogger(CompressorChartTest.class)
.debug("out pressure " + (comp1.getOutletStream().getPressure("bara")));
org.apache.logging.log4j.LogManager.getLogger(CompressorChartTest.class)
.debug("power " + comp1.getPower("MW"));
org.apache.logging.log4j.LogManager.getLogger(CompressorChartTest.class)
.debug("polytropic head " + comp1.getPolytropicFluidHead());
org.apache.logging.log4j.LogManager.getLogger(CompressorChartTest.class)
.debug("polytropic efficiency " + comp1.getPolytropicEfficiency());
org.apache.logging.log4j.LogManager.getLogger(CompressorChartTest.class)
.debug("speed " + comp1.getSpeed());
org.apache.logging.log4j.LogManager.getLogger(CompressorChartTest.class)
.debug("dist to surge " + comp1.getDistanceToSurge());
org.apache.logging.log4j.LogManager.getLogger(CompressorChartTest.class)
.debug("surge flow rate margin " + comp1.getSurgeFlowRateMargin());
org.apache.logging.log4j.LogManager.getLogger(CompressorChartTest.class)
.debug("surge flow rate " + comp1.getSurgeFlowRate());
}

}
33 changes: 33 additions & 0 deletions src/test/java/neqsim/process/processmodel/CompressorModule.java
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
package neqsim.process.processmodel;

import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertFalse;
import static org.junit.jupiter.api.Assertions.assertTrue;
import org.junit.jupiter.api.Test;
import neqsim.process.equipment.compressor.Compressor;
Expand Down Expand Up @@ -154,7 +155,39 @@ public void testProcess() {
feedStream.setFlowRate(204094, "kg/hr");
operations.run();


assertTrue(seccondStageCompressor.isSurge(seccondStageCompressor.getPolytropicFluidHead(),
seccondStageCompressor.getInletStream().getFlowRate("m3/hr")));


double pressurespeedclac = seccondStageCompressor.getOutletPressure();
double speedcomp = seccondStageCompressor.getSpeed();

seccondStageCompressor.setSolveSpeed(true);
operations.run();

assertEquals(pressurespeedclac, seccondStageCompressor.getOutletStream().getPressure("bara"),
0.5);
assertEquals(speedcomp, seccondStageCompressor.getSpeed(), 0.5);
assertEquals(259.8380255, seccondStageCompressor.getInletStream().getFlowRate("m3/hr"), 0.2);

feedStream.setFlowRate(304094, "kg/hr");
operations.run();

assertEquals(pressurespeedclac, seccondStageCompressor.getOutletStream().getPressure("bara"),
0.5);
assertEquals(3526, seccondStageCompressor.getSpeed(), 10);
assertEquals(386.5, seccondStageCompressor.getInletStream().getFlowRate("m3/hr"), 0.2);
assertTrue(seccondStageCompressor.isSurge(seccondStageCompressor.getPolytropicFluidHead(),
seccondStageCompressor.getInletStream().getFlowRate("m3/hr")));

feedStream.setFlowRate(704094, "kg/hr");
operations.run();

assertEquals(pressurespeedclac, seccondStageCompressor.getOutletStream().getPressure("bara"),
0.5);
assertEquals(4177, seccondStageCompressor.getSpeed(), 10);
assertFalse(seccondStageCompressor.isSurge(seccondStageCompressor.getPolytropicFluidHead(),
seccondStageCompressor.getInletStream().getFlowRate("m3/hr")));
}
}