Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add runtime storage fallback detection" #48

Merged
merged 2 commits into from
May 24, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 16 additions & 2 deletions src/common/utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -36,15 +36,29 @@ void CastStorageComputeEx(const nnvm::NodeAttrs& attrs,
namespace common {

#if DMLC_USE_CXX11
/*
* \brief Get input TBlobs from NDArrays, potentially performing cast_storage op and store
* temporary NDArrays in temps. If storage_fallback is false,
* MXNET_EXEC_STORAGE_FALLBACK env var determines whether storage type fallback is allowed.
*/
template <typename xpu>
inline void GetInputBlobs(const std::vector<NDArray>& nds,
std::vector<TBlob> *blobs,
std::vector<NDArray> *temps,
const OpContext& ctx) {
const OpContext& ctx,
bool storage_fallback = false) {
if (storage_fallback == false) {
storage_fallback = dmlc::GetEnv("MXNET_EXEC_STORAGE_FALLBACK", true);
}
for (auto& nd : nds) {
if (nd.storage_type() != kDefaultStorage) {
if (storage_fallback == false) {
LOG(FATAL) << "Storage type conversion detected during execution. "
<< "You are probably executing an operator which "
<< "doesn't support NDArray inputs with non-default storage.";
}
NDArray temp(nd.shape(), nd.ctx(), false);
op::CastStorageComputeEx<xpu>({}, ctx, {nd}, {}, {temp});
op::CastStorageComputeImpl<xpu>(ctx.get_stream<xpu>(), nd, temp);
temps->push_back(temp);
blobs->push_back(temp.data());
} else {
Expand Down
2 changes: 1 addition & 1 deletion src/operator/operator_common.h
Original file line number Diff line number Diff line change
Expand Up @@ -327,7 +327,7 @@ void FCompExFallback(const nnvm::NodeAttrs& attrs,
FCompute fcompute) {
std::vector<TBlob> in_blobs, out_blobs;
std::vector<NDArray> tmps;
common::GetInputBlobs<xpu>(inputs, &in_blobs, &tmps, ctx);
common::GetInputBlobs<xpu>(inputs, &in_blobs, &tmps, ctx, true);
common::GetOutputBlobs<xpu>(outputs, &out_blobs);
fcompute(attrs, ctx, in_blobs, req, out_blobs);
}
Expand Down
20 changes: 14 additions & 6 deletions tests/python/unittest/test_sparse_ndarray.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,11 @@
from numpy.testing import assert_allclose
import numpy.random as rnd

def assert_fcompex(f, *args, **kwargs):
prev_val = mx.test_utils.set_env_var("MXNET_EXEC_STORAGE_FALLBACK", "0", "1")
f(*args, **kwargs)
mx.test_utils.set_env_var("MXNET_EXEC_STORAGE_FALLBACK", prev_val)

def check_sparse_nd_elemwise_binary(shapes, storage_types, f, g):
# generate inputs
nds = []
Expand All @@ -27,11 +32,14 @@ def test_sparse_nd_elemwise_add():
op = mx.nd.elemwise_add
for i in range(num_repeats):
shape = [(rnd.randint(1, 10),rnd.randint(1, 10))] * 2
check_sparse_nd_elemwise_binary(shape, ['default_storage'] * 2, op, g)
check_sparse_nd_elemwise_binary(shape, ['default_storage', 'row_sparse'], op, g)
check_sparse_nd_elemwise_binary(shape, ['row_sparse', 'row_sparse'], op, g)

# Test a operator which doesn't implement FComputeEx
assert_fcompex(check_sparse_nd_elemwise_binary,
shape, ['default_storage'] * 2, op, g)
assert_fcompex(check_sparse_nd_elemwise_binary,
shape, ['default_storage', 'row_sparse'], op, g)
assert_fcompex(check_sparse_nd_elemwise_binary,
shape, ['row_sparse', 'row_sparse'], op, g)

# test a operator which doesn't implement FComputeEx
def test_sparse_nd_elementwise_fallback():
num_repeats = 10
g = lambda x,y: x + y
Expand Down Expand Up @@ -141,9 +149,9 @@ def check_sparse_nd_csr_slice(shape):

if __name__ == '__main__':
test_sparse_nd_zeros()
test_sparse_nd_elemwise_add()
test_sparse_nd_elementwise_fallback()
test_sparse_nd_copy()
test_sparse_nd_elemwise_add()
test_sparse_nd_setitem()
test_sparse_nd_basic()
test_sparse_nd_slice()