Lecturers: Anna Kuzina; Evgenii Egorov
Class Teachers and TAs
Class Teachers | Contact | Group | TA (contact) |
---|---|---|---|
Maria Tikhonova | tg: @mashkka_t | БПИ184 | Alexandra Kogan (tg: @horror_in_black) |
Maksim Karpov | tg: @buntar29 | БПИ181, БПИ182 | Kirill Bykov (tg: @darkydash), Victor Grishanin (tg: @vgrishanin) |
Polina Polinuna | tg: @ppolunina | БПИ185 | Michail Kim (tg: @kimihailv) |
Vadim Kokhtev | tg: @despairazure | БПИ183 | Daniil Kosakin (tg: @nieto95) |
Use this form to send feedback to the course team anytime
[PR] Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg.
Link
[ESL] Hastie, T., Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The elements of statistical learning: Data mining, inference, and prediction. New York: Springer.
Link
[FML] Mohri, M., Talwalkar, A., & Rostamizadeh, A. Second Edition, (2018). Foundations of Machine Learning. Cambridge, MA: The MIT Press.
Link
Date | Topic | Lecture materials | Reading |
---|---|---|---|
30 jan | 1.Introduction | Slides | [FML] Ch 1; [ESL] Ch 2.1-2 |
6 feb | 2.Gradient Optimization | Slides | [FML] Appx A, B; Convex Optimization book |
13 feb | 3.Linear Regression | Slides, Notebook | [PR] Ch 3.1; [ESL] Ch 3.1-4; [FML] Ch 4.4-6 |
20 feb | 4.Linear Classification | Slides (GLM), Notes (GLM) , Slides (linclass) | [PR] Ch 4.1; [ESL] Ch 4.1-2, 4.4; [FML] Ch 13 |
27 feb | 5.Logistic Regression and SVM | Slides | [ESL] Ch 12.1-3; [FML] Ch 5, 6 |
6 mar | 6.Decision Trees | Slides | [ESL] Ch 9.2 |
12 mar | 7.Bagging, Random Forest | Slides, Notebook | [PR] Ch 3.2 (bias-variance) [ESL] Ch 8 [FML] Ch 7 |
19 mar | 8.Gradient boosting | Slides | [PR] Ch 14.3 [ESL] Ch 10 |
22 mar - 4 apr | NO LECTURES | --- | --- |
9 apr | 9.Clustering and Anomaly Detection | Slides, Notebook | [PR] Ch 9.1; [ESL] Ch 13.2, 14.3 |
16 apr | 10.EM and PCA | Lecture notes | [PR] Ch 9.2-9.4; [ESL] Ch 8.5 |
23 apr | 11.Bayesian Linear Regression | Slides | [PR] Ch 2.3-2.4, 3.3-3.5 |
30 apr | 12.GP for regression and classification tasks | [PR] Ch 6.4 | |
14 may | 13.MLP and DNN for Classification | Slides | [PR] Ch 5.1-5.5; [ESL] Ch 11 |
21 may | 14.Deep Generative Models | Overview | |
28 may | 15.Summary |
Date | Topic | Materials | Extra Reading/Practice |
---|---|---|---|
25-30 jan | 1.Basic toolbox | Notebook; Dataset | Python Crash Course |
1-6 feb | 2.EDA and Scikit-learn | Notebook | |
8-13 feb | 3.Calculus recap and Gradient Descent | Notebook, pdf | The Matrix Cookbook |
15-20 feb | 4.Linear Regression | Notebook | |
22-27 feb | 5.Classification | Notebook | |
1-6 mar | 6.Texts and Multiclass classification | Notebook, Dataset | |
8-13 mar | 7.Decision Trees | Notebook | |
15-20 mar | 8.Ensembles | Notebook | |
5-10 apr | 9.Gradient Boosting | Notebook | |
12-17 apr | 10.Anomaly detection and Clustering | Notebook | |
19-24 apr | 11.EM | Tasks | |
25-30 apr | 12.Empirical Bayes and RVM | Notebook | [PR] Ch 7.2 |
10-15 may | 13.GP | Notebook | |
17-22 may | 14.MLP | Notebook | |
24-29 may | 15.Summary | Slides |
We'll be using AnyTask for grading: course link
Date Published | Task | Deadline |
---|---|---|
6 feb | HW 1: Notebook, dataset | 20 feb |
26 feb | HW 2: Notebook | 13 mar |
14 mar | HW 3: Notebook | 4 apr |
10 apr | HW 4: Notebook, dataset | 1 may |
3 may | HW 5: Notebook, datasets | 24 may |
31 may | HW 6 Task: pdf, Task: tex | 10 june |
Final grade = 0.7*HW + 0.3*Exam
HW
- Average grade for the assignments 1 to 5. You can get extra points by solving HW 6, but no more than 10 in total.Exam
- Grade for the exam
You can skip the exam if your average grade for the first 5 assignemnts is not smaller than 6 (HW >=6
).
In this case:
Final grade = HW