-
-
Notifications
You must be signed in to change notification settings - Fork 79
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
… examples
- Loading branch information
Showing
2 changed files
with
293 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
289 changes: 289 additions & 0 deletions
289
examples/modified_cuda_samples/matrixMulCUBLAS/matrixMulCUBLAS.cpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,289 @@ | ||
/* | ||
* Original code Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | ||
* Modifications Copyright (c) 2024, Eyal Rozenberg <eyalroz1@gmx.com> | ||
* | ||
* Redistribution and use in source and binary forms, with or without | ||
* modification, are permitted provided that the following conditions | ||
* are met: | ||
* * Redistributions of source code must retain the above copyright | ||
* notice, this list of conditions and the following disclaimer. | ||
* * Redistributions in binary form must reproduce the above copyright | ||
* notice, this list of conditions and the following disclaimer in the | ||
* documentation and/or other materials provided with the distribution. | ||
* * Neither the name of NVIDIA CORPORATION nor the names of its | ||
* contributors may be used to endorse or promote products derived | ||
* from this software without specific prior written permission. | ||
* | ||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY | ||
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR | ||
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | ||
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | ||
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | ||
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | ||
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
*/ | ||
|
||
/* | ||
* Matrix multiplication: C = A * B. | ||
* Host code. | ||
* | ||
* This sample implements matrix multiplication as described in Chapter 3 | ||
* of the programming guide and uses the CUBLAS library to demonstrate | ||
* the best performance. | ||
* SOME PRECAUTIONS: | ||
* IF WE WANT TO CALCULATE ROW-MAJOR MATRIX MULTIPLY C = A * B, | ||
* WE JUST NEED CALL CUBLAS API IN A REVERSE ORDER: cublasSegemm(B, A)! | ||
* The reason is explained as follows: | ||
* CUBLAS library uses column-major storage, but C/C++ use row-major storage. | ||
* When passing the matrix pointer to CUBLAS, the memory layout alters from | ||
* row-major to column-major, which is equivalent to an implicit transpose. | ||
* In the case of row-major C/C++ matrix A, B, and a simple matrix multiplication | ||
* C = A * B, we can't use the input order like cublasSgemm(A, B) because of | ||
* implicit transpose. The actual result of cublasSegemm(A, B) is A(T) * B(T). | ||
* If col(A(T)) != row(B(T)), equal to row(A) != col(B), A(T) and B(T) are not | ||
* multipliable. Moreover, even if A(T) and B(T) are multipliable, the result C | ||
* is a column-based cublas matrix, which means C(T) in C/C++, we need extra | ||
* transpose code to convert it to a row-based C/C++ matrix. | ||
* To solve the problem, let's consider our desired result C, a row-major matrix. | ||
* In cublas format, it is C(T) actually (because of the implicit transpose). | ||
* C = A * B, so C(T) = (A * B) (T) = B(T) * A(T). Cublas matrice B(T) and A(T) | ||
* happen to be C/C++ matrice B and A (still because of the implicit transpose)! | ||
* We don't need extra transpose code, we only need alter the input order! | ||
* | ||
* CUBLAS provides high-performance matrix multiplication. | ||
* See also: | ||
* V. Volkov and J. Demmel, "Benchmarking GPUs to tune dense linear algebra," | ||
* in Proc. 2008 ACM/IEEE Conf. on Supercomputing (SC '08), | ||
* Piscataway, NJ: IEEE Press, 2008, pp. Art. 31:1-11. | ||
*/ | ||
|
||
#include <cublas_v2.h> | ||
#include "../../common.hpp" | ||
|
||
|
||
// Optional Command-line multiplier for matrix sizes | ||
typedef struct _matrixSize { | ||
unsigned int uiWA, uiHA, uiWB, uiHB, uiWC, uiHC; | ||
} sMatrixSize; | ||
|
||
//////////////////////////////////////////////////////////////////////////////// | ||
//! Compute reference data set matrix multiply on CPU | ||
//! C = A * B | ||
//! @param C reference data, computed but preallocated | ||
//! @param A matrix A as provided to device | ||
//! @param B matrix B as provided to device | ||
//! @param hA height of matrix A | ||
//! @param wB width of matrix B | ||
//////////////////////////////////////////////////////////////////////////////// | ||
void matrixMulCPU(float *C, const float *A, const float *B, unsigned int hA, | ||
unsigned int wA, unsigned int wB) | ||
{ | ||
for (unsigned int i = 0; i < hA; ++i) | ||
for (unsigned int j = 0; j < wB; ++j) { | ||
double sum = 0; | ||
|
||
for (unsigned int k = 0; k < wA; ++k) { | ||
double a = A[i * wA + k]; | ||
double b = B[k * wB + j]; | ||
sum += a * b; | ||
} | ||
|
||
C[i * wB + j] = (float) sum; | ||
} | ||
} | ||
|
||
inline bool compare_l2_norm( | ||
cuda::span<float const> reference, | ||
cuda::span<const float> data, | ||
float const epsilon) | ||
{ | ||
if (reference.size() != data.size()) { | ||
std::cerr << "Sizes of two spans to be compared - differ."; | ||
exit(EXIT_FAILURE); | ||
} | ||
assert_(epsilon >= 0); | ||
|
||
float error = 0; | ||
float ref = 0; | ||
|
||
for (unsigned int i = 0; i < data.size(); ++i) { | ||
float diff = reference[i] - data[i]; | ||
error += diff * diff; | ||
ref += reference[i] * reference[i]; | ||
} | ||
|
||
float normRef = ::sqrtf(ref); | ||
|
||
if (fabs(ref) < 1e-7) { | ||
std::cerr << "ERROR, reference l2-norm is 0\n"; | ||
exit(EXIT_FAILURE); | ||
} | ||
|
||
float normError = ::sqrtf(error); | ||
error = normError / normRef; | ||
bool result = error < epsilon; | ||
if (not result) { | ||
std::cerr << "ERROR, L2-norm error " << error << " is greater than epsilon " << epsilon << "\n"; | ||
} | ||
return result; | ||
} | ||
|
||
sMatrixSize initialize_matrix_dimensions() | ||
{ | ||
auto matrix_size_multiplier{5}; | ||
sMatrixSize matrix_dims; | ||
int block_size{32}; | ||
|
||
matrix_dims.uiWA = 3 * block_size * matrix_size_multiplier; | ||
matrix_dims.uiHA = 4 * block_size * matrix_size_multiplier; | ||
|
||
matrix_dims.uiWB = 2 * block_size * matrix_size_multiplier; | ||
matrix_dims.uiHB = 3 * block_size * matrix_size_multiplier; | ||
|
||
matrix_dims.uiWC = 2 * block_size * matrix_size_multiplier; | ||
matrix_dims.uiHC = 4 * block_size * matrix_size_multiplier; | ||
|
||
std::cout | ||
<< "MatrixA(" << matrix_dims.uiHA << ',' << matrix_dims.uiWA << "), " | ||
<< "MatrixB(" << matrix_dims.uiHB << ',' << matrix_dims.uiWB << "), " | ||
<< "MatrixC(" << matrix_dims.uiHC << ',' << matrix_dims.uiWC << ")\n"; | ||
|
||
if (matrix_dims.uiWA != matrix_dims.uiHB || | ||
matrix_dims.uiHA != matrix_dims.uiHC || | ||
matrix_dims.uiWB != matrix_dims.uiWC) { | ||
printf("ERROR: Matrix sizes do not match!\n"); | ||
exit(EXIT_FAILURE); | ||
} | ||
return matrix_dims; | ||
} | ||
|
||
void multiply_and_time_with_cublas( | ||
cuda::device_t device, | ||
cuda::span<float> d_A, | ||
cuda::span<float> d_B, | ||
cuda::span<float> d_C, | ||
cuda::span<float> h_CUBLAS, | ||
sMatrixSize matrix_dims, | ||
int num_iterations) | ||
{ | ||
std::cout << "Computing result using CUBLAS..."; | ||
|
||
const float alpha = 1.0f; | ||
const float beta = 0.0f; | ||
cublasHandle_t handle; | ||
|
||
cublasCreate(&handle); | ||
|
||
// Perform warmup operation with cublas | ||
cublasSgemm( | ||
handle, CUBLAS_OP_N, CUBLAS_OP_N, | ||
matrix_dims.uiWB, matrix_dims.uiHA, matrix_dims.uiWA, // m, n, k | ||
&alpha, d_B.data(), | ||
matrix_dims.uiWB, // lda | ||
d_A.data(), | ||
matrix_dims.uiWA, // ldb | ||
&beta, | ||
d_C.data(), | ||
matrix_dims.uiWB // ldc | ||
); | ||
|
||
// Allocate CUDA events that we'll use for timing | ||
|
||
// Record the start event | ||
auto stream = device.default_stream(); | ||
auto start = stream.enqueue.event(); | ||
|
||
for (int iteration_index = 0; iteration_index < num_iterations; iteration_index++) { | ||
// note cublas is column primary! | ||
// need to transpose the order | ||
cublasSgemm( | ||
handle, CUBLAS_OP_N, CUBLAS_OP_N, matrix_dims.uiWB, matrix_dims.uiHA, | ||
matrix_dims.uiWA, &alpha, d_B.data(), matrix_dims.uiWB, d_A.data(), | ||
matrix_dims.uiWA, &beta, d_C.data(), matrix_dims.uiWB); | ||
} | ||
auto end = stream.enqueue.event(); | ||
|
||
std::cout << "done.\n"; | ||
|
||
// Wait for the stop event to complete | ||
end.synchronize(); | ||
|
||
auto total = cuda::event::time_elapsed_between(start, end); | ||
|
||
// Compute and print the performance | ||
auto msec_per_iteration = total.count() / num_iterations; | ||
double ops_per_multiplication = 2.0 * (double) matrix_dims.uiHC * | ||
(double) matrix_dims.uiWC * | ||
(double) matrix_dims.uiHB; | ||
double giga_ops_per_second = | ||
(ops_per_multiplication * 1.0e-9f) / (msec_per_iteration / 1000.0f); | ||
printf("Performance= %.2f GFlop/s, Time= %.3f msec, Size= %.0f Ops\n", | ||
giga_ops_per_second, msec_per_iteration, ops_per_multiplication); | ||
|
||
cuda::memory::copy(h_CUBLAS, d_C); | ||
|
||
// Destroy the handle | ||
cublasDestroy(handle); | ||
} | ||
|
||
//////////////////////////////////////////////////////////////////////////////// | ||
//! Run a simple test matrix multiply using CUBLAS | ||
//////////////////////////////////////////////////////////////////////////////// | ||
|
||
int main(int argc, char **argv) | ||
{ | ||
std::cout << "[Matrix Multiply CUBLAS] - Starting...\n"; | ||
auto device_id = choose_device(argc, argv); | ||
auto device = cuda::device::get(device_id); | ||
|
||
std::cout << "GPU Device " << device_id << ": \"" << device.name() << "\" " | ||
<< "with compute capability " << device.compute_capability() << '\n'; | ||
|
||
auto matrix_dims = initialize_matrix_dimensions(); | ||
int num_iterations = 30; | ||
|
||
auto size_A = matrix_dims.uiWA * matrix_dims.uiHA; | ||
auto size_B = matrix_dims.uiWB * matrix_dims.uiHB; | ||
auto size_C = matrix_dims.uiWC * matrix_dims.uiHC; | ||
|
||
auto h_A = cuda::make_unique_span<float>(size_A); | ||
auto h_B = cuda::make_unique_span<float>(size_B); | ||
auto h_CUBLAS_result = cuda::make_unique_span<float>(size_C); | ||
|
||
// set seed for rand() | ||
srand(2006); | ||
|
||
// initialize host memory | ||
auto generator = []() { return rand() / (float) RAND_MAX; }; | ||
std::generate(h_A.begin(), h_A.end(), generator); | ||
std::generate(h_B.begin(), h_B.end(), generator); | ||
|
||
// allocate device memory | ||
auto d_A = cuda::memory::make_unique_span<float>(device, size_A); | ||
auto d_B = cuda::memory::make_unique_span<float>(device, size_B); | ||
auto d_C = cuda::memory::make_unique_span<float>(device, size_C); | ||
|
||
cuda::memory::copy(d_A, h_A); | ||
cuda::memory::copy(d_B, h_B); | ||
|
||
multiply_and_time_with_cublas(device, d_A, d_B, d_C, h_CUBLAS_result, matrix_dims, num_iterations); | ||
|
||
// compute reference solution | ||
std::cout << "Computing result using host CPU..."; | ||
auto h_CPU_result = cuda::make_unique_span<float>(size_C); | ||
matrixMulCPU(h_CPU_result.data(), h_A.data(), h_B.data(), matrix_dims.uiHA, matrix_dims.uiWA, matrix_dims.uiWB); | ||
std::cout << "Done.\n"; | ||
|
||
bool about_equal = compare_l2_norm(h_CPU_result, h_CUBLAS_result, 1.0e-6f); | ||
|
||
std::cout << "CUBLAS Matrix Multiply is close enough to CPU results: " << (about_equal ? "Yes" : "No") << '\n'; | ||
std::cout << (about_equal ? "SUCCESS" : "FAILURE"); | ||
} |