forked from neurazum/bai
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'neurazum:main' into main
- Loading branch information
Showing
4 changed files
with
166 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,94 @@ | ||
# bai-3.0 Emotion (3549313 parametre) | ||
|
||
## "bai-3.0 Emotion" modeli, EEG üzerine eğitilmiş dünyanın en büyük üçüncü yapay zeka modelidir. Kişinin duygu durum analizini yapmaktadır. | ||
|
||
#### NOT: Gerçek zamanlı EEG veri takibi uygulamasına modeli entegre ederseniz, gerçek zamanlı olarak duygu tahmini yapabilmektedir. Uygulamaya erişebilmek için: https://github.com/neurazum/Realtime-EEG-Monitoring | ||
|
||
## ----------------------------------------------------------------------------------- | ||
|
||
# bai-3.0 Emotion (3549313 parameters) | ||
|
||
## The "bai-3.0 Emotion" model is the world's third largest artificial intelligence model trained on EEG. It analyzes the person's emotional state. | ||
|
||
## NOTE: If you integrate the model into a real-time EEG data tracking application, it can predict emotions in real time. To access the application: https://github.com/neurazum/Realtime-EEG-Monitoring | ||
**Doğruluk/Accuracy: %97,79549718574108** | ||
|
||
# Kullanım / Usage | ||
|
||
```python | ||
import numpy as np | ||
import pandas as pd | ||
from sklearn.preprocessing import StandardScaler | ||
from tensorflow.keras.models import load_model | ||
import matplotlib.pyplot as plt | ||
|
||
model_path = 'model-path' | ||
|
||
model = load_model(model_path) | ||
|
||
model_name = model_path.split('/')[-1].split('.')[0] | ||
|
||
plt.figure(figsize=(10, 6)) | ||
plt.title(f'Duygu Tahmini ({model_name}.2)') | ||
plt.xlabel('Zaman') | ||
plt.ylabel('Sınıf') | ||
plt.legend(loc='upper right') | ||
plt.grid(True) | ||
plt.show() | ||
model.summary() | ||
``` | ||
|
||
# Tahmin / Prediction | ||
|
||
```python | ||
import numpy as np | ||
import pandas as pd | ||
from sklearn.preprocessing import StandardScaler | ||
from tensorflow.keras.models import load_model | ||
|
||
model_path = 'model-path' | ||
|
||
model = load_model(model_path) | ||
|
||
scaler = StandardScaler() | ||
|
||
predictions = model.predict(X_new_reshaped) | ||
predicted_labels = np.argmax(predictions, axis=1) | ||
|
||
label_mapping = {'NEGATIVE': 0, 'NEUTRAL': 1, 'POSITIVE': 2} | ||
label_mapping_reverse = {v: k for k, v in label_mapping.items()} | ||
|
||
#new_input = np.array([[23, 465, 12, 9653] * 637]) | ||
new_input = np.random.rand(1, 2548) # 1 örnek ve 2548 özellik | ||
new_input_scaled = scaler.fit_transform(new_input) | ||
new_input_reshaped = new_input_scaled.reshape((new_input_scaled.shape[0], 1, new_input_scaled.shape[1])) | ||
|
||
new_prediction = model.predict(new_input_reshaped) | ||
predicted_label = np.argmax(new_prediction, axis=1)[0] | ||
predicted_emotion = label_mapping_reverse[predicted_label] | ||
|
||
if predicted_emotion == 'NEGATIVE': | ||
predicted_emotion = 'Negatif' | ||
elif predicted_emotion == 'NEUTRAL': | ||
predicted_emotion = 'Nötr' | ||
elif predicted_emotion == 'POSITIVE': | ||
predicted_emotion = 'Pozitif' | ||
|
||
print(f'Giriş Verileri: {new_input}') | ||
print(f'Tahmin Edilen Duygu: {predicted_emotion}') | ||
``` | ||
|
||
# Python Sürümü / Python Version | ||
|
||
### 3.9 <=> 3.13 | ||
|
||
# Modüller / Modules | ||
|
||
```bash | ||
matplotlib==3.8.0 | ||
matplotlib-inline==0.1.6 | ||
numpy==1.26.4 | ||
pandas==2.2.2 | ||
scikit-learn==1.3.1 | ||
tensorflow==2.15.0 | ||
``` |
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,72 @@ | ||
# bai-3.0 Epilepsy (45851parametre) | ||
|
||
## "bai-3.0 Epilepsy" modeli, hastanın epilepsi nöbeti durumunu tespit eder. | ||
|
||
#### NOT: Gerçek zamanlı EEG veri takibi uygulamasına modeli entegre ederseniz, gerçek zamanlı olarak duygu tahmini yapabilmektedir. Uygulamaya erişebilmek için: https://github.com/neurazum/Realtime-EEG-Monitoring | ||
|
||
## ----------------------------------------------------------------------------------- | ||
|
||
# bai-3.0 Epilepsy (45851 parameters) | ||
|
||
## The "bai-3.0 Epilepsy" model detects the patient's epileptic seizure status. | ||
|
||
#### NOTE: If you integrate the model into a real-time EEG data tracking application, it can predict emotions in real time. To access the application: https://github.com/neurazum/Realtime-EEG-Monitoring | ||
**Doğruluk/Accuracy: %68,90829694323143** | ||
|
||
# Kullanım / Usage | ||
|
||
```python | ||
import pandas as pd | ||
import numpy as np | ||
import ast | ||
from tensorflow.keras.models import load_model, Sequential | ||
from sklearn.metrics import accuracy_score | ||
|
||
model_path = 'model/path' | ||
|
||
model = load_model(model_path) | ||
|
||
test_data_path = 'epilepsy/dataset' | ||
test_data = pd.read_csv(test_data_path) | ||
|
||
test_data['sample'] = test_data['sample'].apply(ast.literal_eval) | ||
|
||
X_test = np.array(test_data['sample'].tolist()) | ||
y_test = test_data['label'].values.astype(int) | ||
|
||
timesteps = 10 | ||
|
||
X_test_reshaped = [] | ||
|
||
for i in range(len(X_test) - timesteps): | ||
X_test_reshaped.append(X_test[i:i + timesteps]) | ||
|
||
X_test_reshaped = np.array(X_test_reshaped) | ||
|
||
y_pred = model.predict(X_test_reshaped) | ||
y_pred_classes = (y_pred > 0.77).astype(int) # En kararlı sonuçlar -> 0.78 ve 0.77. Eşik değeri: çıkan sonucun yuvarlama değerini artırıp azaltma. | ||
# Örn. Olasılık < 0.77 ise "0", olasılık >= 0.77 ise "1" tahminini yap. | ||
|
||
accuracy = accuracy_score(y_test[timesteps:], y_pred_classes) | ||
|
||
print("Gerçek Değerler (1: Nöbet, 0: Nöbet Değil) ve Tahminler:") | ||
for i in range(len(y_pred_classes)): | ||
print(f"Gerçek: {y_test[i + timesteps]}, Tahmin: {y_pred_classes[i][0]}") | ||
print(f"Modelin doğruluk oranı: %{accuracy * 100}") | ||
model.summary() | ||
``` | ||
|
||
# Python Sürümü / Python Version | ||
|
||
### 3.9 <=> 3.13 | ||
|
||
# Modüller / Modules | ||
|
||
```bash | ||
matplotlib==3.8.0 | ||
matplotlib-inline==0.1.6 | ||
numpy==1.26.4 | ||
pandas==2.2.2 | ||
scikit-learn==1.3.1 | ||
tensorflow==2.15.0 | ||
``` |
Binary file not shown.