Skip to content

Commit

Permalink
Merge branch 'neurazum:main' into main
Browse files Browse the repository at this point in the history
  • Loading branch information
eyupipler authored Jul 19, 2024
2 parents efe9c48 + 41dd9bd commit 7da523b
Show file tree
Hide file tree
Showing 4 changed files with 166 additions and 0 deletions.
94 changes: 94 additions & 0 deletions Main Models/bai-3.0 Emotion/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
# bai-3.0 Emotion (3549313 parametre)

## "bai-3.0 Emotion" modeli, EEG üzerine eğitilmiş dünyanın en büyük üçüncü yapay zeka modelidir. Kişinin duygu durum analizini yapmaktadır.

#### NOT: Gerçek zamanlı EEG veri takibi uygulamasına modeli entegre ederseniz, gerçek zamanlı olarak duygu tahmini yapabilmektedir. Uygulamaya erişebilmek için: https://github.com/neurazum/Realtime-EEG-Monitoring

## -----------------------------------------------------------------------------------

# bai-3.0 Emotion (3549313 parameters)

## The "bai-3.0 Emotion" model is the world's third largest artificial intelligence model trained on EEG. It analyzes the person's emotional state.

## NOTE: If you integrate the model into a real-time EEG data tracking application, it can predict emotions in real time. To access the application: https://github.com/neurazum/Realtime-EEG-Monitoring
**Doğruluk/Accuracy: %97,79549718574108**

# Kullanım / Usage

```python
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.models import load_model
import matplotlib.pyplot as plt

model_path = 'model-path'

model = load_model(model_path)

model_name = model_path.split('/')[-1].split('.')[0]

plt.figure(figsize=(10, 6))
plt.title(f'Duygu Tahmini ({model_name}.2)')
plt.xlabel('Zaman')
plt.ylabel('Sınıf')
plt.legend(loc='upper right')
plt.grid(True)
plt.show()
model.summary()
```

# Tahmin / Prediction

```python
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.models import load_model

model_path = 'model-path'

model = load_model(model_path)

scaler = StandardScaler()

predictions = model.predict(X_new_reshaped)
predicted_labels = np.argmax(predictions, axis=1)

label_mapping = {'NEGATIVE': 0, 'NEUTRAL': 1, 'POSITIVE': 2}
label_mapping_reverse = {v: k for k, v in label_mapping.items()}

#new_input = np.array([[23, 465, 12, 9653] * 637])
new_input = np.random.rand(1, 2548) # 1 örnek ve 2548 özellik
new_input_scaled = scaler.fit_transform(new_input)
new_input_reshaped = new_input_scaled.reshape((new_input_scaled.shape[0], 1, new_input_scaled.shape[1]))

new_prediction = model.predict(new_input_reshaped)
predicted_label = np.argmax(new_prediction, axis=1)[0]
predicted_emotion = label_mapping_reverse[predicted_label]

if predicted_emotion == 'NEGATIVE':
predicted_emotion = 'Negatif'
elif predicted_emotion == 'NEUTRAL':
predicted_emotion = 'Nötr'
elif predicted_emotion == 'POSITIVE':
predicted_emotion = 'Pozitif'

print(f'Giriş Verileri: {new_input}')
print(f'Tahmin Edilen Duygu: {predicted_emotion}')
```

# Python Sürümü / Python Version

### 3.9 <=> 3.13

# Modüller / Modules

```bash
matplotlib==3.8.0
matplotlib-inline==0.1.6
numpy==1.26.4
pandas==2.2.2
scikit-learn==1.3.1
tensorflow==2.15.0
```
Binary file added Main Models/bai-3.0 Emotion/bai-3.0 Emotion.keras
Binary file not shown.
72 changes: 72 additions & 0 deletions Main Models/bai-3.0 Epilepsy/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
# bai-3.0 Epilepsy (45851parametre)

## "bai-3.0 Epilepsy" modeli, hastanın epilepsi nöbeti durumunu tespit eder.

#### NOT: Gerçek zamanlı EEG veri takibi uygulamasına modeli entegre ederseniz, gerçek zamanlı olarak duygu tahmini yapabilmektedir. Uygulamaya erişebilmek için: https://github.com/neurazum/Realtime-EEG-Monitoring

## -----------------------------------------------------------------------------------

# bai-3.0 Epilepsy (45851 parameters)

## The "bai-3.0 Epilepsy" model detects the patient's epileptic seizure status.

#### NOTE: If you integrate the model into a real-time EEG data tracking application, it can predict emotions in real time. To access the application: https://github.com/neurazum/Realtime-EEG-Monitoring
**Doğruluk/Accuracy: %68,90829694323143**

# Kullanım / Usage

```python
import pandas as pd
import numpy as np
import ast
from tensorflow.keras.models import load_model, Sequential
from sklearn.metrics import accuracy_score

model_path = 'model/path'

model = load_model(model_path)

test_data_path = 'epilepsy/dataset'
test_data = pd.read_csv(test_data_path)

test_data['sample'] = test_data['sample'].apply(ast.literal_eval)

X_test = np.array(test_data['sample'].tolist())
y_test = test_data['label'].values.astype(int)

timesteps = 10

X_test_reshaped = []

for i in range(len(X_test) - timesteps):
X_test_reshaped.append(X_test[i:i + timesteps])

X_test_reshaped = np.array(X_test_reshaped)

y_pred = model.predict(X_test_reshaped)
y_pred_classes = (y_pred > 0.77).astype(int) # En kararlı sonuçlar -> 0.78 ve 0.77. Eşik değeri: çıkan sonucun yuvarlama değerini artırıp azaltma.
# Örn. Olasılık < 0.77 ise "0", olasılık >= 0.77 ise "1" tahminini yap.

accuracy = accuracy_score(y_test[timesteps:], y_pred_classes)

print("Gerçek Değerler (1: Nöbet, 0: Nöbet Değil) ve Tahminler:")
for i in range(len(y_pred_classes)):
print(f"Gerçek: {y_test[i + timesteps]}, Tahmin: {y_pred_classes[i][0]}")
print(f"Modelin doğruluk oranı: %{accuracy * 100}")
model.summary()
```

# Python Sürümü / Python Version

### 3.9 <=> 3.13

# Modüller / Modules

```bash
matplotlib==3.8.0
matplotlib-inline==0.1.6
numpy==1.26.4
pandas==2.2.2
scikit-learn==1.3.1
tensorflow==2.15.0
```
Binary file not shown.

0 comments on commit 7da523b

Please sign in to comment.