Skip to content
This repository has been archived by the owner on Oct 31, 2023. It is now read-only.

AutoAvatar Autoregressive Neural Fields for Dynamic Avatar Modeling

License

Notifications You must be signed in to change notification settings

facebookresearch/AutoAvatar

Repository files navigation

AutoAvatar: Autoregressive Neural Fields for Dynamic Avatar Modeling

Ziqian Bai · Timur Bagautdinov · Javier Romero . Michael Zollhöfer · Ping Tan · Shunsuke Saito

ECCV 2022

Logo

AutoAvatar is an autoregressive approach for modeling dynamically deforming human bodies directly from raw scans without the need of precise surface registration.


Paper PDF Project Page video views

Data Preparation of DFaust

  • Create "DFaust" folder under "<workspace_folder>".
cd <workspace_folder>
mkdir DFaust
  • Download SMPL+H parameters of DFaust from AMASS dataset to "<workspace_folder>/DFaust". Unzip to get the "DFaust_67" folder.

  • Download Dfaust scan data from link. Here, we take subject 50002 as an example in the following steps. Unzip data to "<workspace_folder>/DFaust/scans/50002".

  • Download SMPL model from link. Download SMPL meta data from link. Move SMPL related files "basicmodel_m_lbs_10_207_0_v1.0.0.pkl", "basicModel_f_lbs_10_207_0_v1.0.0.pkl", "uv_info.npz", and "smpl_resample_idxs.npz" into "<workspace_folder>/SMPL".

  • Set up AMASS for DFaust data preprocessing. More specifically, download SMPL+H (smplh.tar.xz) and unzip to "<workspace_folder>/SMPL/smplh". Download DMPLs (dmpls.tar.xz) and unzip to "<workspace_folder>/SMPL/dmpls".

  • clone this repo to "<workspace_folder>".

cd <workspace_folder>
git clone https://github.com/facebookresearch/AutoAvatar.git
  • Now we should have the following folder structure:
    \<workspace_folder\>
    ├── DFaust
    │   ├── DFaust_67
    │   │   └── 50002
    │   │       └── *.npz
    │   └── scans
    │       └── 50002
    │           └── \<sequences_folders\>
    ├── SMPL
    │   ├── smplh
    │   │   ├── female
    │   │   ├── male
    │   │   └── neutral
    │   ├── dmpls
    │   │   ├── female
    │   │   ├── male
    │   │   └── neutral
    |   └── \<other_SMPL_related_files\>
    └── AutoAvatar

Environment Setup

cd AutoAvatar
conda create -n AutoAvatar python=3.8
conda activate AutoAvatar
bash setup.sh
  • Create "external" folder and install human_body_prior for DFaust data preprocess.
mkdir external
cd external
git clone https://github.com/nghorbani/human_body_prior.git
cd human_body_prior
python setup.py develop

Data Preprocess

  • Run "DFaust_generate.py" to preprocess data. Note that this may take a long time due to the mesh simplification (the open3d API mesh_o3d.simplify_quadric_decimation() in simplify_scans())! Mesh simplification is to speed up data loading during training.
cd AutoAvatar
export PYTHONPATH=<workspace_folder>/AutoAvatar
python data/DFaust_generate.py --ws_dir <workspace_folder>

Train

  • Run "implicit_train_dfaust.py" to train the model.
cd AutoAvatar
export PYTHONPATH=<workspace_folder>/AutoAvatar
python exps/PosedDecKNN_dPoses_dHs/implicit_train_dfaust.py --ws_dir <workspace_folder> --configs_path configs/PosedDecKNN_dPoses_dHs/AutoRegr.yaml --configs_path_rollout configs/PosedDecKNN_dPoses_dHs/AutoRegr_Rollout2.yaml

Test

  • Run "implicit_eval_dfaust.py" to test the model.
cd AutoAvatar
export PYTHONPATH=<workspace_folder>/AutoAvatar
python exps/PosedDecKNN_dPoses_dHs/implicit_eval_dfaust.py --ws_dir <workspace_folder> --ckpt_dir <checkpoint_folder>

Pretrained Model

  • Download pretrained model for DFaust subject 50002 from link.

Publication

If you find our code or paper useful, please consider citing:

@inproceedings{bai2022autoavatar,
  title={AutoAvatar: Autoregressive Neural Fields for Dynamic Avatar Modeling},
  author={Bai, Ziqian and Bagautdinov, Timur and Romero, Javier and Zollh{\"o}fer, Michael and Tan, Ping and Saito, Shunsuke},
  booktitle={European conference on computer vision},
  year={2022},
}

License

CC-BY-NC 4.0. See the LICENSE file.

About

AutoAvatar Autoregressive Neural Fields for Dynamic Avatar Modeling

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published