-
Notifications
You must be signed in to change notification settings - Fork 924
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Mathilde Caron
committed
Jul 15, 2021
1 parent
9085367
commit 30aedce
Showing
4 changed files
with
353 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,201 @@ | ||
# Copyright (c) Facebook, Inc. and its affiliates. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import os | ||
import sys | ||
import pickle | ||
import argparse | ||
|
||
import torch | ||
from torch import nn | ||
import torch.distributed as dist | ||
import torch.backends.cudnn as cudnn | ||
from torchvision import models as torchvision_models | ||
from torchvision import transforms as pth_transforms | ||
from PIL import Image, ImageFile | ||
import numpy as np | ||
|
||
import utils | ||
import vision_transformer as vits | ||
from eval_knn import extract_features | ||
|
||
|
||
class OxfordParisDataset(torch.utils.data.Dataset): | ||
def __init__(self, dir_main, dataset, split, transform=None, imsize=None): | ||
if dataset not in ['roxford5k', 'rparis6k']: | ||
raise ValueError('Unknown dataset: {}!'.format(dataset)) | ||
|
||
# loading imlist, qimlist, and gnd, in cfg as a dict | ||
gnd_fname = os.path.join(dir_main, dataset, 'gnd_{}.pkl'.format(dataset)) | ||
with open(gnd_fname, 'rb') as f: | ||
cfg = pickle.load(f) | ||
cfg['gnd_fname'] = gnd_fname | ||
cfg['ext'] = '.jpg' | ||
cfg['qext'] = '.jpg' | ||
cfg['dir_data'] = os.path.join(dir_main, dataset) | ||
cfg['dir_images'] = os.path.join(cfg['dir_data'], 'jpg') | ||
cfg['n'] = len(cfg['imlist']) | ||
cfg['nq'] = len(cfg['qimlist']) | ||
cfg['im_fname'] = config_imname | ||
cfg['qim_fname'] = config_qimname | ||
cfg['dataset'] = dataset | ||
self.cfg = cfg | ||
|
||
self.samples = cfg["qimlist"] if split == "query" else cfg["imlist"] | ||
self.transform = transform | ||
self.imsize = imsize | ||
|
||
def __len__(self): | ||
return len(self.samples) | ||
|
||
def __getitem__(self, index): | ||
path = os.path.join(self.cfg["dir_images"], self.samples[index] + ".jpg") | ||
ImageFile.LOAD_TRUNCATED_IMAGES = True | ||
with open(path, 'rb') as f: | ||
img = Image.open(f) | ||
img = img.convert('RGB') | ||
if self.imsize is not None: | ||
img.thumbnail((self.imsize, self.imsize), Image.ANTIALIAS) | ||
if self.transform is not None: | ||
img = self.transform(img) | ||
return img, index | ||
|
||
|
||
def config_imname(cfg, i): | ||
return os.path.join(cfg['dir_images'], cfg['imlist'][i] + cfg['ext']) | ||
|
||
|
||
def config_qimname(cfg, i): | ||
return os.path.join(cfg['dir_images'], cfg['qimlist'][i] + cfg['qext']) | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser('Image Retrieval on revisited Paris and Oxford') | ||
parser.add_argument('--data_path', default='/path/to/revisited_paris_oxford/', type=str) | ||
parser.add_argument('--dataset', default='roxford5k', type=str, choices=['roxford5k', 'rparis6k']) | ||
parser.add_argument('--multiscale', default=False, type=utils.bool_flag) | ||
parser.add_argument('--imsize', default=224, type=int, help='Image size (square)') | ||
parser.add_argument('--pretrained_weights', default='', type=str, help="Path to pretrained weights to evaluate.") | ||
parser.add_argument('--use_cuda', default=True, type=utils.bool_flag) | ||
parser.add_argument('--arch', default='vit_small', type=str, help='Architecture') | ||
parser.add_argument('--patch_size', default=16, type=int, help='Patch resolution of the model.') | ||
parser.add_argument("--checkpoint_key", default="teacher", type=str, | ||
help='Key to use in the checkpoint (example: "teacher")') | ||
parser.add_argument('--num_workers', default=10, type=int, help='Number of data loading workers per GPU.') | ||
parser.add_argument("--dist_url", default="env://", type=str, help="""url used to set up | ||
distributed training; see https://pytorch.org/docs/stable/distributed.html""") | ||
parser.add_argument("--local_rank", default=0, type=int, help="Please ignore and do not set this argument.") | ||
args = parser.parse_args() | ||
|
||
utils.init_distributed_mode(args) | ||
print("git:\n {}\n".format(utils.get_sha())) | ||
print("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items()))) | ||
cudnn.benchmark = True | ||
|
||
# ============ preparing data ... ============ | ||
transform = pth_transforms.Compose([ | ||
pth_transforms.ToTensor(), | ||
pth_transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), | ||
]) | ||
dataset_train = OxfordParisDataset(args.data_path, args.dataset, split="train", transform=transform, imsize=args.imsize) | ||
dataset_query = OxfordParisDataset(args.data_path, args.dataset, split="query", transform=transform, imsize=args.imsize) | ||
sampler = torch.utils.data.DistributedSampler(dataset_train, shuffle=False) | ||
data_loader_train = torch.utils.data.DataLoader( | ||
dataset_train, | ||
sampler=sampler, | ||
batch_size=1, | ||
num_workers=args.num_workers, | ||
pin_memory=True, | ||
drop_last=False, | ||
) | ||
data_loader_query = torch.utils.data.DataLoader( | ||
dataset_query, | ||
batch_size=1, | ||
num_workers=args.num_workers, | ||
pin_memory=True, | ||
drop_last=False, | ||
) | ||
print(f"train: {len(dataset_train)} imgs / query: {len(dataset_query)} imgs") | ||
|
||
# ============ building network ... ============ | ||
if "vit" in args.arch: | ||
model = vits.__dict__[args.arch](patch_size=args.patch_size, num_classes=0) | ||
print(f"Model {args.arch} {args.patch_size}x{args.patch_size} built.") | ||
elif "xcit" in args.arch: | ||
model = torch.hub.load('facebookresearch/xcit', args.arch, num_classes=0) | ||
elif args.arch in torchvision_models.__dict__.keys(): | ||
model = torchvision_models.__dict__[args.arch](num_classes=0) | ||
else: | ||
print(f"Architecture {args.arch} non supported") | ||
sys.exit(1) | ||
if args.use_cuda: | ||
model.cuda() | ||
model.eval() | ||
|
||
# load pretrained weights | ||
if os.path.isfile(args.pretrained_weights): | ||
state_dict = torch.load(args.pretrained_weights, map_location="cpu") | ||
if args.checkpoint_key is not None and args.checkpoint_key in state_dict: | ||
print(f"Take key {args.checkpoint_key} in provided checkpoint dict") | ||
state_dict = state_dict[args.checkpoint_key] | ||
# remove `module.` prefix | ||
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()} | ||
# remove `backbone.` prefix induced by multicrop wrapper | ||
state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()} | ||
msg = model.load_state_dict(state_dict, strict=False) | ||
print('Pretrained weights found at {} and loaded with msg: {}'.format(args.pretrained_weights, msg)) | ||
elif args.arch == "vit_small" and args.patch_size == 16: | ||
print("Since no pretrained weights have been provided, we load pretrained DINO weights on Google Landmark v2.") | ||
model.load_state_dict(torch.hub.load_state_dict_from_url(url="https://dl.fbaipublicfiles.com/dino/dino_vitsmall16_googlelandmark_pretrain/dino_vitsmall16_googlelandmark_pretrain.pth")) | ||
else: | ||
print("Warning: We use random weights.") | ||
|
||
############################################################################ | ||
# Step 1: extract features | ||
train_features = extract_features(model, data_loader_train, args.use_cuda, multiscale=args.multiscale) | ||
query_features = extract_features(model, data_loader_query, args.use_cuda, multiscale=args.multiscale) | ||
|
||
if utils.get_rank() == 0: # only rank 0 will work from now on | ||
# normalize features | ||
train_features = nn.functional.normalize(train_features, dim=1, p=2) | ||
query_features = nn.functional.normalize(query_features, dim=1, p=2) | ||
|
||
############################################################################ | ||
# Step 2: similarity | ||
sim = torch.mm(train_features, query_features.T) | ||
ranks = torch.argsort(-sim, dim=0).cpu().numpy() | ||
|
||
############################################################################ | ||
# Step 3: evaluate | ||
gnd = dataset_train.cfg['gnd'] | ||
# evaluate ranks | ||
ks = [1, 5, 10] | ||
# search for easy & hard | ||
gnd_t = [] | ||
for i in range(len(gnd)): | ||
g = {} | ||
g['ok'] = np.concatenate([gnd[i]['easy'], gnd[i]['hard']]) | ||
g['junk'] = np.concatenate([gnd[i]['junk']]) | ||
gnd_t.append(g) | ||
mapM, apsM, mprM, prsM = utils.compute_map(ranks, gnd_t, ks) | ||
# search for hard | ||
gnd_t = [] | ||
for i in range(len(gnd)): | ||
g = {} | ||
g['ok'] = np.concatenate([gnd[i]['hard']]) | ||
g['junk'] = np.concatenate([gnd[i]['junk'], gnd[i]['easy']]) | ||
gnd_t.append(g) | ||
mapH, apsH, mprH, prsH = utils.compute_map(ranks, gnd_t, ks) | ||
print('>> {}: mAP M: {}, H: {}'.format(args.dataset, np.around(mapM*100, decimals=2), np.around(mapH*100, decimals=2))) | ||
print('>> {}: mP@k{} M: {}, H: {}'.format(args.dataset, np.array(ks), np.around(mprM*100, decimals=2), np.around(mprH*100, decimals=2))) | ||
dist.barrier() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.