Skip to content

Commit

Permalink
pulsar integration.
Browse files Browse the repository at this point in the history
Summary:
This diff integrates the pulsar renderer source code into PyTorch3D as an alternative backend for the PyTorch3D point renderer. This diff is the first of a series of three diffs to complete that migration and focuses on the packaging and integration of the source code.

For more information about the pulsar backend, see the release notes and the paper (https://arxiv.org/abs/2004.07484). For information on how to use the backend, see the point cloud rendering notebook and the examples in the folder `docs/examples`.

Tasks addressed in the following diffs:
* Add the PyTorch3D interface,
* Add notebook examples and documentation (or adapt the existing ones to feature both interfaces).

Reviewed By: nikhilaravi

Differential Revision: D23947736

fbshipit-source-id: a5e77b53e6750334db22aefa89b4c079cda1b443
  • Loading branch information
classner authored and facebook-github-bot committed Nov 3, 2020
1 parent d565032 commit b19fe1d
Show file tree
Hide file tree
Showing 137 changed files with 10,055 additions and 37 deletions.
50 changes: 50 additions & 0 deletions docs/examples/pulsar_basic.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""
This example demonstrates the most trivial, direct interface of the pulsar
sphere renderer. It renders and saves an image with 10 random spheres.
Output: basic.png.
"""
from os import path

import imageio
import torch
from pytorch3d.renderer.points.pulsar import Renderer


n_points = 10
width = 1_000
height = 1_000
device = torch.device("cuda")
renderer = Renderer(width, height, n_points).to(device)
# Generate sample data.
vert_pos = torch.rand(n_points, 3, dtype=torch.float32, device=device) * 10.0
vert_pos[:, 2] += 25.0
vert_pos[:, :2] -= 5.0
vert_col = torch.rand(n_points, 3, dtype=torch.float32, device=device)
vert_rad = torch.rand(n_points, dtype=torch.float32, device=device)
cam_params = torch.tensor(
[
0.0,
0.0,
0.0, # Position 0, 0, 0 (x, y, z).
0.0,
0.0,
0.0, # Rotation 0, 0, 0 (in axis-angle format).
5.0, # Focal length in world size.
2.0, # Sensor size in world size.
],
dtype=torch.float32,
device=device,
)
# Render.
image = renderer(
vert_pos,
vert_col,
vert_rad,
cam_params,
1.0e-1, # Renderer blending parameter gamma, in [1., 1e-5].
45.0, # Maximum depth.
)
print("Writing image to `%s`." % (path.abspath("basic.png")))
imageio.imsave("basic.png", (image.cpu().detach() * 255.0).to(torch.uint8).numpy())
158 changes: 158 additions & 0 deletions docs/examples/pulsar_cam.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,158 @@
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""
This example demonstrates camera parameter optimization with the plain
pulsar interface. For this, a reference image has been pre-generated
(you can find it at `../../tests/pulsar/reference/examples_TestRenderer_test_cam.png`).
The same scene parameterization is loaded and the camera parameters
distorted. Gradient-based optimization is used to converge towards the
original camera parameters.
"""
from os import path

import cv2
import imageio
import numpy as np
import torch
from pytorch3d.renderer.points.pulsar import Renderer
from torch import nn, optim


n_points = 20
width = 1_000
height = 1_000
device = torch.device("cuda")


class SceneModel(nn.Module):
"""
A simple scene model to demonstrate use of pulsar in PyTorch modules.
The scene model is parameterized with sphere locations (vert_pos),
channel content (vert_col), radiuses (vert_rad), camera position (cam_pos),
camera rotation (cam_rot) and sensor focal length and width (cam_sensor).
The forward method of the model renders this scene description. Any
of these parameters could instead be passed as inputs to the forward
method and come from a different model.
"""

def __init__(self):
super(SceneModel, self).__init__()
self.gamma = 0.1
# Points.
torch.manual_seed(1)
vert_pos = torch.rand(n_points, 3, dtype=torch.float32) * 10.0
vert_pos[:, 2] += 25.0
vert_pos[:, :2] -= 5.0
self.register_parameter("vert_pos", nn.Parameter(vert_pos, requires_grad=False))
self.register_parameter(
"vert_col",
nn.Parameter(
torch.rand(n_points, 3, dtype=torch.float32), requires_grad=False
),
)
self.register_parameter(
"vert_rad",
nn.Parameter(
torch.rand(n_points, dtype=torch.float32), requires_grad=False
),
)
self.register_parameter(
"cam_pos",
nn.Parameter(
torch.tensor([0.1, 0.1, 0.0], dtype=torch.float32), requires_grad=True
),
)
self.register_parameter(
"cam_rot",
nn.Parameter(
torch.tensor(
[
# We're using the 6D rot. representation for better gradients.
0.9995,
0.0300445,
-0.0098482,
-0.0299445,
0.9995,
0.0101482,
],
dtype=torch.float32,
),
requires_grad=True,
),
)
self.register_parameter(
"cam_sensor",
nn.Parameter(
torch.tensor([4.8, 1.8], dtype=torch.float32), requires_grad=True
),
)
self.renderer = Renderer(width, height, n_points)

def forward(self):
return self.renderer.forward(
self.vert_pos,
self.vert_col,
self.vert_rad,
torch.cat([self.cam_pos, self.cam_rot, self.cam_sensor]),
self.gamma,
45.0,
)


# Load reference.
ref = (
torch.from_numpy(
imageio.imread(
"../../tests/pulsar/reference/examples_TestRenderer_test_cam.png"
)
).to(torch.float32)
/ 255.0
).to(device)
# Set up model.
model = SceneModel().to(device)
# Optimizer.
optimizer = optim.SGD(
[
{"params": [model.cam_pos], "lr": 1e-4}, # 1e-3
{"params": [model.cam_rot], "lr": 5e-6},
{"params": [model.cam_sensor], "lr": 1e-4},
]
)

print("Writing video to `%s`." % (path.abspath("cam.gif")))
writer = imageio.get_writer("cam.gif", format="gif", fps=25)

# Optimize.
for i in range(300):
optimizer.zero_grad()
result = model()
# Visualize.
result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
cv2.imshow("opt", result_im[:, :, ::-1])
writer.append_data(result_im)
overlay_img = np.ascontiguousarray(
((result * 0.5 + ref * 0.5).cpu().detach().numpy() * 255).astype(np.uint8)[
:, :, ::-1
]
)
overlay_img = cv2.putText(
overlay_img,
"Step %d" % (i),
(10, 40),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(0, 0, 0),
2,
cv2.LINE_AA,
False,
)
cv2.imshow("overlay", overlay_img)
cv2.waitKey(1)
# Update.
loss = ((result - ref) ** 2).sum()
print("loss {}: {}".format(i, loss.item()))
loss.backward()
optimizer.step()
writer.close()
Loading

0 comments on commit b19fe1d

Please sign in to comment.