-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Summary: This diff integrates the pulsar renderer source code into PyTorch3D as an alternative backend for the PyTorch3D point renderer. This diff is the first of a series of three diffs to complete that migration and focuses on the packaging and integration of the source code. For more information about the pulsar backend, see the release notes and the paper (https://arxiv.org/abs/2004.07484). For information on how to use the backend, see the point cloud rendering notebook and the examples in the folder `docs/examples`. Tasks addressed in the following diffs: * Add the PyTorch3D interface, * Add notebook examples and documentation (or adapt the existing ones to feature both interfaces). Reviewed By: nikhilaravi Differential Revision: D23947736 fbshipit-source-id: a5e77b53e6750334db22aefa89b4c079cda1b443
- Loading branch information
1 parent
d565032
commit b19fe1d
Showing
137 changed files
with
10,055 additions
and
37 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
#!/usr/bin/env python3 | ||
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. | ||
""" | ||
This example demonstrates the most trivial, direct interface of the pulsar | ||
sphere renderer. It renders and saves an image with 10 random spheres. | ||
Output: basic.png. | ||
""" | ||
from os import path | ||
|
||
import imageio | ||
import torch | ||
from pytorch3d.renderer.points.pulsar import Renderer | ||
|
||
|
||
n_points = 10 | ||
width = 1_000 | ||
height = 1_000 | ||
device = torch.device("cuda") | ||
renderer = Renderer(width, height, n_points).to(device) | ||
# Generate sample data. | ||
vert_pos = torch.rand(n_points, 3, dtype=torch.float32, device=device) * 10.0 | ||
vert_pos[:, 2] += 25.0 | ||
vert_pos[:, :2] -= 5.0 | ||
vert_col = torch.rand(n_points, 3, dtype=torch.float32, device=device) | ||
vert_rad = torch.rand(n_points, dtype=torch.float32, device=device) | ||
cam_params = torch.tensor( | ||
[ | ||
0.0, | ||
0.0, | ||
0.0, # Position 0, 0, 0 (x, y, z). | ||
0.0, | ||
0.0, | ||
0.0, # Rotation 0, 0, 0 (in axis-angle format). | ||
5.0, # Focal length in world size. | ||
2.0, # Sensor size in world size. | ||
], | ||
dtype=torch.float32, | ||
device=device, | ||
) | ||
# Render. | ||
image = renderer( | ||
vert_pos, | ||
vert_col, | ||
vert_rad, | ||
cam_params, | ||
1.0e-1, # Renderer blending parameter gamma, in [1., 1e-5]. | ||
45.0, # Maximum depth. | ||
) | ||
print("Writing image to `%s`." % (path.abspath("basic.png"))) | ||
imageio.imsave("basic.png", (image.cpu().detach() * 255.0).to(torch.uint8).numpy()) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,158 @@ | ||
#!/usr/bin/env python3 | ||
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. | ||
""" | ||
This example demonstrates camera parameter optimization with the plain | ||
pulsar interface. For this, a reference image has been pre-generated | ||
(you can find it at `../../tests/pulsar/reference/examples_TestRenderer_test_cam.png`). | ||
The same scene parameterization is loaded and the camera parameters | ||
distorted. Gradient-based optimization is used to converge towards the | ||
original camera parameters. | ||
""" | ||
from os import path | ||
|
||
import cv2 | ||
import imageio | ||
import numpy as np | ||
import torch | ||
from pytorch3d.renderer.points.pulsar import Renderer | ||
from torch import nn, optim | ||
|
||
|
||
n_points = 20 | ||
width = 1_000 | ||
height = 1_000 | ||
device = torch.device("cuda") | ||
|
||
|
||
class SceneModel(nn.Module): | ||
""" | ||
A simple scene model to demonstrate use of pulsar in PyTorch modules. | ||
The scene model is parameterized with sphere locations (vert_pos), | ||
channel content (vert_col), radiuses (vert_rad), camera position (cam_pos), | ||
camera rotation (cam_rot) and sensor focal length and width (cam_sensor). | ||
The forward method of the model renders this scene description. Any | ||
of these parameters could instead be passed as inputs to the forward | ||
method and come from a different model. | ||
""" | ||
|
||
def __init__(self): | ||
super(SceneModel, self).__init__() | ||
self.gamma = 0.1 | ||
# Points. | ||
torch.manual_seed(1) | ||
vert_pos = torch.rand(n_points, 3, dtype=torch.float32) * 10.0 | ||
vert_pos[:, 2] += 25.0 | ||
vert_pos[:, :2] -= 5.0 | ||
self.register_parameter("vert_pos", nn.Parameter(vert_pos, requires_grad=False)) | ||
self.register_parameter( | ||
"vert_col", | ||
nn.Parameter( | ||
torch.rand(n_points, 3, dtype=torch.float32), requires_grad=False | ||
), | ||
) | ||
self.register_parameter( | ||
"vert_rad", | ||
nn.Parameter( | ||
torch.rand(n_points, dtype=torch.float32), requires_grad=False | ||
), | ||
) | ||
self.register_parameter( | ||
"cam_pos", | ||
nn.Parameter( | ||
torch.tensor([0.1, 0.1, 0.0], dtype=torch.float32), requires_grad=True | ||
), | ||
) | ||
self.register_parameter( | ||
"cam_rot", | ||
nn.Parameter( | ||
torch.tensor( | ||
[ | ||
# We're using the 6D rot. representation for better gradients. | ||
0.9995, | ||
0.0300445, | ||
-0.0098482, | ||
-0.0299445, | ||
0.9995, | ||
0.0101482, | ||
], | ||
dtype=torch.float32, | ||
), | ||
requires_grad=True, | ||
), | ||
) | ||
self.register_parameter( | ||
"cam_sensor", | ||
nn.Parameter( | ||
torch.tensor([4.8, 1.8], dtype=torch.float32), requires_grad=True | ||
), | ||
) | ||
self.renderer = Renderer(width, height, n_points) | ||
|
||
def forward(self): | ||
return self.renderer.forward( | ||
self.vert_pos, | ||
self.vert_col, | ||
self.vert_rad, | ||
torch.cat([self.cam_pos, self.cam_rot, self.cam_sensor]), | ||
self.gamma, | ||
45.0, | ||
) | ||
|
||
|
||
# Load reference. | ||
ref = ( | ||
torch.from_numpy( | ||
imageio.imread( | ||
"../../tests/pulsar/reference/examples_TestRenderer_test_cam.png" | ||
) | ||
).to(torch.float32) | ||
/ 255.0 | ||
).to(device) | ||
# Set up model. | ||
model = SceneModel().to(device) | ||
# Optimizer. | ||
optimizer = optim.SGD( | ||
[ | ||
{"params": [model.cam_pos], "lr": 1e-4}, # 1e-3 | ||
{"params": [model.cam_rot], "lr": 5e-6}, | ||
{"params": [model.cam_sensor], "lr": 1e-4}, | ||
] | ||
) | ||
|
||
print("Writing video to `%s`." % (path.abspath("cam.gif"))) | ||
writer = imageio.get_writer("cam.gif", format="gif", fps=25) | ||
|
||
# Optimize. | ||
for i in range(300): | ||
optimizer.zero_grad() | ||
result = model() | ||
# Visualize. | ||
result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8) | ||
cv2.imshow("opt", result_im[:, :, ::-1]) | ||
writer.append_data(result_im) | ||
overlay_img = np.ascontiguousarray( | ||
((result * 0.5 + ref * 0.5).cpu().detach().numpy() * 255).astype(np.uint8)[ | ||
:, :, ::-1 | ||
] | ||
) | ||
overlay_img = cv2.putText( | ||
overlay_img, | ||
"Step %d" % (i), | ||
(10, 40), | ||
cv2.FONT_HERSHEY_SIMPLEX, | ||
1, | ||
(0, 0, 0), | ||
2, | ||
cv2.LINE_AA, | ||
False, | ||
) | ||
cv2.imshow("overlay", overlay_img) | ||
cv2.waitKey(1) | ||
# Update. | ||
loss = ((result - ref) ** 2).sum() | ||
print("loss {}: {}".format(i, loss.item())) | ||
loss.backward() | ||
optimizer.step() | ||
writer.close() |
Oops, something went wrong.