Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

MHA: Stricter input validation #592

Merged
merged 2 commits into from
Dec 15, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions xformers/ops/fmha/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -299,6 +299,7 @@ def _memory_efficient_attention(
def _memory_efficient_attention_forward(
inp: Inputs, op: Optional[Type[AttentionFwOpBase]]
) -> torch.Tensor:
inp.validate_inputs()
output_shape = inp.normalize_bmhk()
if op is None:
op = _dispatch_fw(inp)
Expand All @@ -314,6 +315,7 @@ def _memory_efficient_attention_forward(
def _memory_efficient_attention_forward_requires_grad(
inp: Inputs, op: Optional[Type[AttentionFwOpBase]]
) -> Tuple[torch.Tensor, Context]:
inp.validate_inputs()
output_shape = inp.normalize_bmhk()
if op is None:
op = _dispatch_fw(inp)
Expand All @@ -330,6 +332,7 @@ def _memory_efficient_attention_backward(
ctx: Context, inp: Inputs, grad: torch.Tensor, op: Optional[Type[AttentionBwOpBase]]
) -> Gradients:
"""Warning: grad/ctx.out is potentially in BMK format"""
inp.validate_inputs()
if grad.ndim != inp.query.ndim or grad.ndim != ctx.out.ndim:
raise ValueError(
"All tensors should be either in BMK (ndim=3) or BMHK (ndim=4) format. \n"
Expand Down
37 changes: 37 additions & 0 deletions xformers/ops/fmha/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,6 +99,43 @@ def normalize_bmhk(self) -> Tuple[int, ...]:
self.value = self.value.unsqueeze(2)
return output_shape

def validate_inputs(self) -> None:
qkv = (self.query, self.key, self.value)
if self.query.ndim not in (3, 4) or any(x.ndim != self.query.ndim for x in qkv):
raise ValueError(
f"Query/Key/Value should all have BMHK or BMK shape.\n"
f" query.shape: {self.query.shape}\n"
f" key.shape : {self.key.shape}\n"
f" value.shape: {self.value.shape}"
)
if any(x.device != self.query.device for x in qkv):
raise ValueError("Query/Key/Value should all be on the same device")
if any(x.dtype != self.query.dtype for x in qkv):
raise ValueError(
"Query/Key/Value should all have the same dtype\n"
f" query.dtype: {self.query.dtype}\n"
f" key.dtype : {self.key.dtype}\n"
f" value.dtype: {self.value.dtype}"
)
has_seqlen = any(isinstance(x, TensorWithSeqLen) for x in qkv)
if has_seqlen:
if not all(isinstance(x, TensorWithSeqLen) for x in qkv):
raise ValueError(
f"One of Query/Key/Value has sequence length information, but not all of them\n"
f" type(query): {type(self.query)}\n"
f" type(key) : {type(self.key)}\n"
f" type(value): {type(self.value)}"
)
if any(x.shape[0] != 1 for x in qkv):
raise ValueError(
f"Expected batch_size=1 when using sequence length information\n"
f" query.shape: {self.query.shape}\n"
f" key.shape : {self.key.shape}\n"
f" value.shape: {self.value.shape}"
)
if self.p < 0.0 or self.p > 1.0:
raise ValueError(f"Invalid dropout probability: p={self.p}")


@dataclass
class Context:
Expand Down