Skip to content

Este proyecto implementa una red neuronal convolucional (CNN) utilizando TensorFlow para la clasificación de imágenes en múltiples categorías. El objetivo es desarrollar un modelo de aprendizaje profundo capaz de identificar y clasificar imágenes en varias categorías definidas, utilizando el dataset Eurostat.

Notifications You must be signed in to change notification settings

fborjalv/tf-image-classification-eurosat

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 

Repository files navigation

tf-image-classification-eurosat

README for EuroSAT Image Classification Project

Project Overview

This project implements a convolutional neural network (CNN) using TensorFlow for image classification into multiple categories. The goal is to develop a deep learning model capable of identifying and classifying images into various defined categories using the Eurostat dataset.

Dataset

The dataset used is the EuroSAT dataset, which is available through TensorFlow Datasets. The dataset consists of RGB satellite images covering 10 different classes, such as residential areas, forests, and farmlands.

Project Structure

  • Data Loading and Preparation:

    • The project begins by loading the EuroSAT dataset using TensorFlow Datasets.
    • The data is then preprocessed and augmented to improve the model's performance and generalization capabilities.
  • Model Development:

    • A Convolutional Neural Network (CNN) is developed using TensorFlow and Keras.
    • Various architectures and hyperparameters are explored to optimize the model.
  • Training and Evaluation:

    • The model is trained on the preprocessed dataset, and its performance is evaluated using standard metrics.
    • Metrics such as accuracy, precision, recall, and confusion matrix are used to assess the model's performance.

Usage

To run the project, follow these steps:

  1. Clone the Repository:

    git clone <repository_url>
  2. Install Dependencies: Ensure you have TensorFlow and TensorFlow Datasets installed. You can install them using pip:

    pip install tensorflow tensorflow-datasets
  3. Run the Notebook: Open and run the provided Jupyter notebook tf-image-classification_eurosat.ipynb to execute the entire workflow, from data loading to model evaluation.

Key Code Snippets

  • Data Loading:

    import tensorflow as tf
    import tensorflow_datasets as tfds
    
    dataset, info = tfds.load("eurosat/rgb", with_info=True, as_supervised=True)
  • Model Training:

    model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
    history = model.fit(train_dataset, epochs=10, validation_data=validation_dataset)
  • Evaluation:

    test_loss, test_accuracy = model.evaluate(test_dataset)
    print(f"Test Accuracy: {test_accuracy}")

Resources

Contributing

Contributions to improve the project are welcome. Feel free to submit pull requests or report issues.

About

Este proyecto implementa una red neuronal convolucional (CNN) utilizando TensorFlow para la clasificación de imágenes en múltiples categorías. El objetivo es desarrollar un modelo de aprendizaje profundo capaz de identificar y clasificar imágenes en varias categorías definidas, utilizando el dataset Eurostat.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published