Skip to content

Registration Loss Learning for Deep Probabilistic Point Set Registration

License

Notifications You must be signed in to change notification settings

felja633/RLLReg

Repository files navigation

RLLReg

This repository contains a Pytorch implementation of the point set registration method RLLReg. Details about the method can be found in the 3DV 2020 paper "Registration Loss Learning for Deep Probabilistic Point Set Registration".

ArXiv: [paper]

If you find the code useful, please cite using

@InProceedings{Lawin_2020_3DV,
    author = {Felix J\"aremo Lawin and Per-Erik Forss\'en},
    title = {Registration Loss Learning for Deep Probabilistic Point Set Registration},
    booktitle = {{IEEE/CVF} International Virtual Conference on 3D Vision ({3DV})},
    month = {November},
    year = {2020}} 

Installation

  • Clone the repository: git clone https://github.com/felja633/RLLReg.git
  • Create a conda environment and install the following dependencies:
conda create -n rllreg python=3.7
conda activate rllreg
conda install -y numpy pathlib mkl-include pyyaml
conda install -y pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch
conda install -y -c conda-forge cudatoolkit-dev
pip install easydict visdom
pip install git+https://github.com/jonbarron/robust_loss_pytorch
conda install -y -c open3d-admin open3d
git clone https://github.com/NVIDIA/MinkowskiEngine.git
cd MinkowskiEngine
python setup.py install --cuda_home=/path/to/conda/rllreg 
pip install torch-scatter==latest+cu102 -f https://pytorch-geometric.com/whl/torch-1.6.0.html
pip install torch-sparse==latest+cu102 -f https://pytorch-geometric.com/whl/torch-1.6.0.html
pip install torch-cluster==latest+cu102 -f https://pytorch-geometric.com/whl/torch-1.6.0.html
pip install torch-spline-conv==latest+cu102 -f https://pytorch-geometric.com/whl/torch-1.6.0.html
pip install torch-geometric

Datasets

Kitti

Download and unpack Velodyne scans from http://www.cvlibs.net/download.php?file=data_odometry_velodyne.zip

3DMatch

Download RGB-D scenes from http://3dmatch.cs.princeton.edu/ using http://vision.princeton.edu/projects/2016/3DMatch/downloads/rgbd-datasets/download.sh and unpack the file. Download train.txt and test.txt. These contain the official train/test splits which can be found in the file https://vision.princeton.edu/projects/2016/3DMatch/downloads/rgbd-datasets/split.txt. Place these text files in the 3DMatch dataset folder.

Configuration

Set up your local environment by setting the correct paths for your system in config.py. Here you should set the paths to the datasets and pre-trained models.

Models

The following pre-trained models are available for download:

Name Training set Weights
RLLReg_threedmatch.pth 3DMatch download
RLLReg_threedmatch_multi.pth 3DMatch download
RLLReg_kitti.pth Kitti download
RLLReg_kitti_multi.pth Kitti download

For the version trained with contrastive loss, use the following models from https://github.com/chrischoy/FCGF

Name Training set Weights
2019-08-16_19-21-47.pth 3DMatch download
KITTI-v0.3-ResUNetBN2C-conv1-5-nout16.pth Kitti download

To further enable comparisons to DGR, download the weights for 3DMatch and Kitti.

Place all pre-trained weights in the same folder and set pretrained_networks to the path of that folder in config.py.

Running evaluations

Scripts for evaluation are available at experiments/. For an evaluation of pairwise registration as described in the paper run:

python experiments/evaluation_kitti.py

Training

Scripts for training are available at experiments/. If you want to train RLLReg for pairwise registration run:

python experiments/train_rll_kitti.py

Additional implementations

This repository also includes a pytorch version of Density Adaptive Point Set Registration (DARE) and Joint Registration of Multiple Point Clouds (JRMPC). Further, models/feature_reg_model_fcgf_fppsr.py and models/feature_reg_model_fpfh_fppsr.py contain pytorch implementations of FPPSR using FCGF and FPFH features respectively.

Under external/DeepGLobalRegistration the official implementation of DGR is located. The code is copied from the original repository but it is modified to use relative paths.

Contact

Felix Järemo Lawin

email: felix.lawin@gmail.com

Acknowledgements

Special thanks go to Shivangi Srivastava who helped with initial implementations of the work!

About

Registration Loss Learning for Deep Probabilistic Point Set Registration

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages