Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update 1.CS229-LinearAlgebra.md #13

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion 0.math/1.CS229/markdown/1.CS229-LinearAlgebra.md
Original file line number Diff line number Diff line change
Expand Up @@ -154,7 +154,7 @@ $$
C=A B=\left[\begin{array}{cc}{-} & {a_{1}^{T}} &{-} \\ {-} & {a_{2}^{T}} &{-} \\ {} & {\vdots} \\ {-} & {a_{m}^{T}} &{-} \end{array}\right]\left[\begin{array}{cccc}{ |} & { |} & {} & { |} \\ {b_{1}} & {b_{2}} & {\cdots} & {b_{p}} \\ { |} & { |} & {} & { |}\end{array}\right]=\left[\begin{array}{cccc}{a_{1}^{T} b_{1}} & {a_{1}^{T} b_{2}} & {\cdots} & {a_{1}^{T} b_{p}} \\ {a_{2}^{T} b_{1}} & {a_{2}^{T} b_{2}} & {\cdots} & {a_{2}^{T} b_{p}} \\ {\vdots} & {\vdots} & {\ddots} & {\vdots} \\ {a_{m}^{T} b_{1}} & {a_{m}^{T} b_{2}} & {\cdots} & {a_{m}^{T} b_{p}}\end{array}\right]
$$

这里的$ A \in \mathbb{R}^{m\times n}$ ,$B \in \mathbb{R}^{n \times p}$, $a_i \in \mathbb{R}^n$ ,$b^j \in \mathbb{R}^{n \times p}$, 这里的$ A \in \mathbb{R}^ {m \times n},$ $B \in \mathbb{R}^ {n \times p} $, $a_i \in \mathbb{R} ^ n $,$ b ^ j \in \mathbb{R} ^ {n \times p} $,所以它们可以计算内积。 我们用通常用行表示$ A $而用列表示$B$。
这里的$ A \in \mathbb{R}^{m\times n}$ ,$B \in \mathbb{R}^{n \times p}$, $a_i \in \mathbb{R}^n$ ,$b^j \in \mathbb{R}^{n}$,所以它们可以计算内积。 我们用通常用行表示$ A $而用列表示$B$。
或者,我们可以用列表示$ A$,用行表示$B $,这时$AB$是求外积的和。公式如下:
$$
C=A B=\left[\begin{array}{cccc}{ |} & { |} & {} & { |} \\ {a_{1}} & {a_{2}} & {\cdots} & {a_{n}} \\ { |} & { |} & {} & { |}\end{array}\right]\left[\begin{array}{c}{-}& {b_{1}^{T}}&{-} \\ {-}& {b_{2}^{T}}&{-} \\ {\vdots} \\{-}& {b_{n}^{T}}&{-}\end{array}\right]=\sum_{i=1}^{n} a_{i} b_{i}^{T}
Expand Down