Skip to content

Commit

Permalink
Fix 6 Flake8 issues (ultralytics#6541)
Browse files Browse the repository at this point in the history
* F541

* F821

* F841

* E741

* E302

* E722

* Apply suggestions from code review

* Update general.py

* Update datasets.py

* Update export.py

* Update plots.py

* Update plots.py

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
  • Loading branch information
Borda and glenn-jocher authored Feb 5, 2022
1 parent d73183c commit dc24369
Show file tree
Hide file tree
Showing 10 changed files with 55 additions and 56 deletions.
14 changes: 8 additions & 6 deletions export.py
Original file line number Diff line number Diff line change
Expand Up @@ -244,7 +244,7 @@ def export_saved_model(model, im, file, dynamic,

tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
im = tf.zeros((batch_size, *imgsz, 3)) # BHWC order for TensorFlow
y = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
_ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
inputs = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
keras_model = keras.Model(inputs=inputs, outputs=outputs)
Expand Down Expand Up @@ -407,16 +407,17 @@ def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
tf_exports = list(x in include for x in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs')) # TensorFlow exports
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights)

# Checks
imgsz *= 2 if len(imgsz) == 1 else 1 # expand
opset = 12 if ('openvino' in include) else opset # OpenVINO requires opset <= 12

# Load PyTorch model
device = select_device(device)
assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
model = attempt_load(weights, map_location=device, inplace=True, fuse=True) # load FP32 model
nc, names = model.nc, model.names # number of classes, class names

# Checks
imgsz *= 2 if len(imgsz) == 1 else 1 # expand
opset = 12 if ('openvino' in include) else opset # OpenVINO requires opset <= 12
assert nc == len(names), f'Model class count {nc} != len(names) {len(names)}'

# Input
gs = int(max(model.stride)) # grid size (max stride)
imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
Expand All @@ -438,7 +439,8 @@ def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'

for _ in range(2):
y = model(im) # dry runs
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} ({file_size(file):.1f} MB)")
shape = tuple(y[0].shape) # model output shape
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")

# Exports
f = [''] * 10 # exported filenames
Expand Down
4 changes: 2 additions & 2 deletions models/tf.py
Original file line number Diff line number Diff line change
Expand Up @@ -427,13 +427,13 @@ def run(weights=ROOT / 'yolov5s.pt', # weights path
# PyTorch model
im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image
model = attempt_load(weights, map_location=torch.device('cpu'), inplace=True, fuse=False)
y = model(im) # inference
_ = model(im) # inference
model.info()

# TensorFlow model
im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
y = tf_model.predict(im) # inference
_ = tf_model.predict(im) # inference

# Keras model
im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
Expand Down
6 changes: 0 additions & 6 deletions setup.cfg
Original file line number Diff line number Diff line change
Expand Up @@ -30,19 +30,13 @@ ignore =
E731 # Do not assign a lambda expression, use a def
F405 # name may be undefined, or defined from star imports: module
E402 # module level import not at top of file
F841 # local variable name is assigned to but never used
E741 # do not use variables named ‘l’, ‘O’, or ‘I’
F821 # undefined name name
E722 # do not use bare except, specify exception instead
F401 # module imported but unused
W504 # line break after binary operator
E127 # continuation line over-indented for visual indent
W504 # line break after binary operator
E231 # missing whitespace after ‘,’, ‘;’, or ‘:’
E501 # line too long
F403 # ‘from module import *’ used; unable to detect undefined names
E302 # expected 2 blank lines, found 0
F541 # f-string without any placeholders


[isort]
Expand Down
53 changes: 27 additions & 26 deletions utils/datasets.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@ def exif_size(img):
s = (s[1], s[0])
elif rotation == 8: # rotation 90
s = (s[1], s[0])
except:
except Exception:
pass

return s
Expand Down Expand Up @@ -420,7 +420,7 @@ def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, r
cache, exists = np.load(cache_path, allow_pickle=True).item(), True # load dict
assert cache['version'] == self.cache_version # same version
assert cache['hash'] == get_hash(self.label_files + self.img_files) # same hash
except:
except Exception:
cache, exists = self.cache_labels(cache_path, prefix), False # cache

# Display cache
Expand Down Expand Up @@ -514,13 +514,13 @@ def cache_labels(self, path=Path('./labels.cache'), prefix=''):
with Pool(NUM_THREADS) as pool:
pbar = tqdm(pool.imap(verify_image_label, zip(self.img_files, self.label_files, repeat(prefix))),
desc=desc, total=len(self.img_files))
for im_file, l, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
nm += nm_f
nf += nf_f
ne += ne_f
nc += nc_f
if im_file:
x[im_file] = [l, shape, segments]
x[im_file] = [lb, shape, segments]
if msg:
msgs.append(msg)
pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupt"
Expand Down Expand Up @@ -627,8 +627,8 @@ def __getitem__(self, index):
@staticmethod
def collate_fn(batch):
img, label, path, shapes = zip(*batch) # transposed
for i, l in enumerate(label):
l[:, 0] = i # add target image index for build_targets()
for i, lb in enumerate(label):
lb[:, 0] = i # add target image index for build_targets()
return torch.stack(img, 0), torch.cat(label, 0), path, shapes

@staticmethod
Expand All @@ -645,15 +645,15 @@ def collate_fn4(batch):
if random.random() < 0.5:
im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2.0, mode='bilinear', align_corners=False)[
0].type(img[i].type())
l = label[i]
lb = label[i]
else:
im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
lb = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
img4.append(im)
label4.append(l)
label4.append(lb)

for i, l in enumerate(label4):
l[:, 0] = i # add target image index for build_targets()
for i, lb in enumerate(label4):
lb[:, 0] = i # add target image index for build_targets()

return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4

Expand Down Expand Up @@ -743,6 +743,7 @@ def load_mosaic9(self, index):
s = self.img_size
indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices
random.shuffle(indices)
hp, wp = -1, -1 # height, width previous
for i, index in enumerate(indices):
# Load image
img, _, (h, w) = load_image(self, index)
Expand Down Expand Up @@ -906,30 +907,30 @@ def verify_image_label(args):
if os.path.isfile(lb_file):
nf = 1 # label found
with open(lb_file) as f:
l = [x.split() for x in f.read().strip().splitlines() if len(x)]
if any([len(x) > 8 for x in l]): # is segment
classes = np.array([x[0] for x in l], dtype=np.float32)
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l] # (cls, xy1...)
l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
l = np.array(l, dtype=np.float32)
nl = len(l)
lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
if any([len(x) > 8 for x in lb]): # is segment
classes = np.array([x[0] for x in lb], dtype=np.float32)
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...)
lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
lb = np.array(lb, dtype=np.float32)
nl = len(lb)
if nl:
assert l.shape[1] == 5, f'labels require 5 columns, {l.shape[1]} columns detected'
assert (l >= 0).all(), f'negative label values {l[l < 0]}'
assert (l[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {l[:, 1:][l[:, 1:] > 1]}'
_, i = np.unique(l, axis=0, return_index=True)
assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected'
assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}'
assert (lb[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}'
_, i = np.unique(lb, axis=0, return_index=True)
if len(i) < nl: # duplicate row check
l = l[i] # remove duplicates
lb = lb[i] # remove duplicates
if segments:
segments = segments[i]
msg = f'{prefix}WARNING: {im_file}: {nl - len(i)} duplicate labels removed'
else:
ne = 1 # label empty
l = np.zeros((0, 5), dtype=np.float32)
lb = np.zeros((0, 5), dtype=np.float32)
else:
nm = 1 # label missing
l = np.zeros((0, 5), dtype=np.float32)
return im_file, l, shape, segments, nm, nf, ne, nc, msg
lb = np.zeros((0, 5), dtype=np.float32)
return im_file, lb, shape, segments, nm, nf, ne, nc, msg
except Exception as e:
nc = 1
msg = f'{prefix}WARNING: {im_file}: ignoring corrupt image/label: {e}'
Expand Down
4 changes: 2 additions & 2 deletions utils/downloads.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,12 +62,12 @@ def attempt_download(file, repo='ultralytics/yolov5'): # from utils.downloads i
response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api
assets = [x['name'] for x in response['assets']] # release assets, i.e. ['yolov5s.pt', 'yolov5m.pt', ...]
tag = response['tag_name'] # i.e. 'v1.0'
except: # fallback plan
except Exception: # fallback plan
assets = ['yolov5n.pt', 'yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt',
'yolov5n6.pt', 'yolov5s6.pt', 'yolov5m6.pt', 'yolov5l6.pt', 'yolov5x6.pt']
try:
tag = subprocess.check_output('git tag', shell=True, stderr=subprocess.STDOUT).decode().split()[-1]
except:
except Exception:
tag = 'v6.0' # current release

if name in assets:
Expand Down
15 changes: 8 additions & 7 deletions utils/general.py
Original file line number Diff line number Diff line change
Expand Up @@ -295,7 +295,7 @@ def check_requirements(requirements=ROOT / 'requirements.txt', exclude=(), insta
for r in requirements:
try:
pkg.require(r)
except Exception as e: # DistributionNotFound or VersionConflict if requirements not met
except Exception: # DistributionNotFound or VersionConflict if requirements not met
s = f"{prefix} {r} not found and is required by YOLOv5"
if install:
LOGGER.info(f"{s}, attempting auto-update...")
Expand Down Expand Up @@ -699,16 +699,16 @@ def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=Non
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
for xi, x in enumerate(prediction): # image index, image inference
# Apply constraints
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
x = x[xc[xi]] # confidence

# Cat apriori labels if autolabelling
if labels and len(labels[xi]):
l = labels[xi]
v = torch.zeros((len(l), nc + 5), device=x.device)
v[:, :4] = l[:, 1:5] # box
lb = labels[xi]
v = torch.zeros((len(lb), nc + 5), device=x.device)
v[:, :4] = lb[:, 1:5] # box
v[:, 4] = 1.0 # conf
v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
v[range(len(lb)), lb[:, 0].long() + 5] = 1.0 # cls
x = torch.cat((x, v), 0)

# If none remain process next image
Expand Down Expand Up @@ -783,7 +783,8 @@ def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_op


def print_mutation(results, hyp, save_dir, bucket):
evolve_csv, results_csv, evolve_yaml = save_dir / 'evolve.csv', save_dir / 'results.csv', save_dir / 'hyp_evolve.yaml'
evolve_csv = save_dir / 'evolve.csv'
evolve_yaml = save_dir / 'hyp_evolve.yaml'
keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
'val/box_loss', 'val/obj_loss', 'val/cls_loss') + tuple(hyp.keys()) # [results + hyps]
keys = tuple(x.strip() for x in keys)
Expand Down
2 changes: 1 addition & 1 deletion utils/loggers/wandb/wandb_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -288,7 +288,7 @@ def download_model_artifact(self, opt):
model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
modeldir = model_artifact.download()
epochs_trained = model_artifact.metadata.get('epochs_trained')
# epochs_trained = model_artifact.metadata.get('epochs_trained')
total_epochs = model_artifact.metadata.get('total_epochs')
is_finished = total_epochs is None
assert not is_finished, 'training is finished, can only resume incomplete runs.'
Expand Down
1 change: 1 addition & 0 deletions utils/metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -239,6 +239,7 @@ def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=
return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf
return iou # IoU


def box_iou(box1, box2):
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
"""
Expand Down
4 changes: 2 additions & 2 deletions utils/plots.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ def check_pil_font(font=FONT, size=10):
font = font if font.exists() else (CONFIG_DIR / font.name)
try:
return ImageFont.truetype(str(font) if font.exists() else font.name, size)
except Exception as e: # download if missing
except Exception: # download if missing
check_font(font)
try:
return ImageFont.truetype(str(font), size)
Expand Down Expand Up @@ -340,7 +340,7 @@ def plot_labels(labels, names=(), save_dir=Path('')):
matplotlib.use('svg') # faster
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
# [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # update colors bug #3195
[y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # update colors bug #3195
ax[0].set_ylabel('instances')
if 0 < len(names) < 30:
ax[0].set_xticks(range(len(names)))
Expand Down
8 changes: 4 additions & 4 deletions utils/torch_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ def git_describe(path=Path(__file__).parent): # path must be a directory
s = f'git -C {path} describe --tags --long --always'
try:
return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1]
except subprocess.CalledProcessError as e:
except subprocess.CalledProcessError:
return '' # not a git repository


Expand All @@ -59,7 +59,7 @@ def device_count():
try:
cmd = 'nvidia-smi -L | wc -l'
return int(subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1])
except Exception as e:
except Exception:
return 0


Expand Down Expand Up @@ -124,7 +124,7 @@ def profile(input, ops, n=10, device=None):
tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward
try:
flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPs
except:
except Exception:
flops = 0

try:
Expand All @@ -135,7 +135,7 @@ def profile(input, ops, n=10, device=None):
try:
_ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
t[2] = time_sync()
except Exception as e: # no backward method
except Exception: # no backward method
# print(e) # for debug
t[2] = float('nan')
tf += (t[1] - t[0]) * 1000 / n # ms per op forward
Expand Down

0 comments on commit dc24369

Please sign in to comment.