forked from apache/datafusion
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
adding benchmark for extracting arrow statistics from parquet (apache…
…#10610) * adding benchmark for extracting arrow statistics from parquet * fix clippy * fix clippy
- Loading branch information
Showing
2 changed files
with
209 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,205 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
//! Benchmarks of benchmark for extracting arrow statistics from parquet | ||
use arrow::array::{ArrayRef, DictionaryArray, Float64Array, StringArray, UInt64Array}; | ||
use arrow_array::{Int32Array, RecordBatch}; | ||
use arrow_schema::{ | ||
DataType::{self, *}, | ||
Field, Schema, | ||
}; | ||
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion}; | ||
use datafusion::datasource::physical_plan::parquet::{ | ||
RequestedStatistics, StatisticsConverter, | ||
}; | ||
use parquet::arrow::{arrow_reader::ArrowReaderBuilder, ArrowWriter}; | ||
use parquet::file::properties::WriterProperties; | ||
use std::sync::Arc; | ||
use tempfile::NamedTempFile; | ||
#[derive(Debug, Clone)] | ||
enum TestTypes { | ||
UInt64, | ||
F64, | ||
String, | ||
Dictionary, | ||
} | ||
|
||
use std::fmt; | ||
|
||
impl fmt::Display for TestTypes { | ||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | ||
match self { | ||
TestTypes::UInt64 => write!(f, "UInt64"), | ||
TestTypes::F64 => write!(f, "F64"), | ||
TestTypes::String => write!(f, "String"), | ||
TestTypes::Dictionary => write!(f, "Dictionary(Int32, String)"), | ||
} | ||
} | ||
} | ||
|
||
fn create_parquet_file(dtype: TestTypes, row_groups: usize) -> NamedTempFile { | ||
let schema = match dtype { | ||
TestTypes::UInt64 => { | ||
Arc::new(Schema::new(vec![Field::new("col", DataType::UInt64, true)])) | ||
} | ||
TestTypes::F64 => Arc::new(Schema::new(vec![Field::new( | ||
"col", | ||
DataType::Float64, | ||
true, | ||
)])), | ||
TestTypes::String => { | ||
Arc::new(Schema::new(vec![Field::new("col", DataType::Utf8, true)])) | ||
} | ||
TestTypes::Dictionary => Arc::new(Schema::new(vec![Field::new( | ||
"col", | ||
DataType::Dictionary(Box::new(Int32), Box::new(Utf8)), | ||
true, | ||
)])), | ||
}; | ||
|
||
let props = WriterProperties::builder().build(); | ||
let file = tempfile::Builder::new() | ||
.suffix(".parquet") | ||
.tempfile() | ||
.unwrap(); | ||
let mut writer = | ||
ArrowWriter::try_new(file.reopen().unwrap(), schema.clone(), Some(props)) | ||
.unwrap(); | ||
|
||
for _ in 0..row_groups { | ||
let batch = match dtype { | ||
TestTypes::UInt64 => make_uint64_batch(), | ||
TestTypes::F64 => make_f64_batch(), | ||
TestTypes::String => make_string_batch(), | ||
TestTypes::Dictionary => make_dict_batch(), | ||
}; | ||
writer.write(&batch).unwrap(); | ||
} | ||
writer.close().unwrap(); | ||
file | ||
} | ||
|
||
fn make_uint64_batch() -> RecordBatch { | ||
let array: ArrayRef = Arc::new(UInt64Array::from(vec![ | ||
Some(1), | ||
Some(2), | ||
Some(3), | ||
Some(4), | ||
Some(5), | ||
])); | ||
RecordBatch::try_new( | ||
Arc::new(arrow::datatypes::Schema::new(vec![ | ||
arrow::datatypes::Field::new("col", UInt64, false), | ||
])), | ||
vec![array], | ||
) | ||
.unwrap() | ||
} | ||
|
||
fn make_f64_batch() -> RecordBatch { | ||
let array: ArrayRef = Arc::new(Float64Array::from(vec![1.0, 2.0, 3.0, 4.0, 5.0])); | ||
RecordBatch::try_new( | ||
Arc::new(arrow::datatypes::Schema::new(vec![ | ||
arrow::datatypes::Field::new("col", Float64, false), | ||
])), | ||
vec![array], | ||
) | ||
.unwrap() | ||
} | ||
|
||
fn make_string_batch() -> RecordBatch { | ||
let array: ArrayRef = Arc::new(StringArray::from(vec!["a", "b", "c", "d", "e"])); | ||
RecordBatch::try_new( | ||
Arc::new(arrow::datatypes::Schema::new(vec![ | ||
arrow::datatypes::Field::new("col", Utf8, false), | ||
])), | ||
vec![array], | ||
) | ||
.unwrap() | ||
} | ||
|
||
fn make_dict_batch() -> RecordBatch { | ||
let keys = Int32Array::from(vec![0, 1, 2, 3, 4]); | ||
let values = StringArray::from(vec!["a", "b", "c", "d", "e"]); | ||
let array: ArrayRef = | ||
Arc::new(DictionaryArray::try_new(keys, Arc::new(values)).unwrap()); | ||
RecordBatch::try_new( | ||
Arc::new(Schema::new(vec![Field::new( | ||
"col", | ||
Dictionary(Box::new(Int32), Box::new(Utf8)), | ||
false, | ||
)])), | ||
vec![array], | ||
) | ||
.unwrap() | ||
} | ||
|
||
fn criterion_benchmark(c: &mut Criterion) { | ||
let row_groups = 100; | ||
use TestTypes::*; | ||
let types = vec![UInt64, F64, String, Dictionary]; | ||
|
||
for dtype in types { | ||
let file = create_parquet_file(dtype.clone(), row_groups); | ||
let file = file.reopen().unwrap(); | ||
let reader = ArrowReaderBuilder::try_new(file).unwrap(); | ||
let metadata = reader.metadata(); | ||
|
||
let mut group = | ||
c.benchmark_group(format!("Extract statistics for {}", dtype.clone())); | ||
group.bench_function( | ||
BenchmarkId::new("extract_statistics", dtype.clone()), | ||
|b| { | ||
b.iter(|| { | ||
let _ = StatisticsConverter::try_new( | ||
"col", | ||
RequestedStatistics::Min, | ||
reader.schema(), | ||
) | ||
.unwrap() | ||
.extract(metadata) | ||
.unwrap(); | ||
|
||
let _ = StatisticsConverter::try_new( | ||
"col", | ||
RequestedStatistics::Max, | ||
reader.schema(), | ||
) | ||
.unwrap() | ||
.extract(reader.metadata()) | ||
.unwrap(); | ||
|
||
let _ = StatisticsConverter::try_new( | ||
"col", | ||
RequestedStatistics::NullCount, | ||
reader.schema(), | ||
) | ||
.unwrap() | ||
.extract(reader.metadata()) | ||
.unwrap(); | ||
|
||
let _ = StatisticsConverter::row_counts(reader.metadata()).unwrap(); | ||
}) | ||
}, | ||
); | ||
group.finish(); | ||
} | ||
} | ||
|
||
criterion_group!(benches, criterion_benchmark); | ||
criterion_main!(benches); |