Skip to content

Commit

Permalink
feat: non-contiguous query with paged kv cache (#553)
Browse files Browse the repository at this point in the history
## Motivation

Previously, only ragged version of prefill kernel supported
non-contiguous query tensor (#404). But with paged kv cache, you have to
make query tensor contiguous. Libraries like vLLM or SGLang must make
query tensor contiguous before calling flashinfer kernels ([vLLM call of
flashinfer](https://github.com/vllm-project/vllm/blob/b7df53cd42f3eab007b4f287c151960858e949df/vllm/attention/backends/flashinfer.py#L839),
[SGLang call of
flashinfer](https://github.com/sgl-project/sglang/blob/87a7cfa080cec3f123618c1429b5f998bf5d99cb/python/sglang/srt/layers/attention/flashinfer_backend.py#L236)).
This PR solves it, ensuring that prefill/decode kernels with paged kv
cache support non-contiguous query tensor.

## Main Changes

1. Add strides of query tensor in `BatchPrefillPagedParams` and
`BatchDecodeParams`.
2. Set stride parameters before calling those kernels.
3. Modify JIT compiling templates to support new kernel parameters.
4. Add some tests.

The Python interfaces remain the same. Nothing changes except it accepts
non-contiguous query tensors now!

---------

Signed-off-by: LinHeLurking <LinHe.Lurking@gmail.com>
  • Loading branch information
LinHeLurking authored Oct 25, 2024
1 parent f6e0010 commit 89f2c4a
Show file tree
Hide file tree
Showing 10 changed files with 196 additions and 17 deletions.
8 changes: 6 additions & 2 deletions flashinfer-aot/csrc_aot/batch_decode.cu
Original file line number Diff line number Diff line change
Expand Up @@ -128,6 +128,10 @@ std::vector<torch::Tensor> BatchDecodeWithPagedKVCacheRun(
auto q_scalar_type = q.scalar_type();
auto kv_scalar_type = paged_k_cache.scalar_type();

// get q_stride_n and q_stride_h
const auto q_stride_n = q.stride(0);
const auto q_stride_h = q.stride(1);

// get kv_cache_strides
const int64_t* kv_cache_strides = nullptr;
auto k_strides = paged_k_cache.strides();
Expand Down Expand Up @@ -157,8 +161,8 @@ std::vector<torch::Tensor> BatchDecodeWithPagedKVCacheRun(
ParamsT params(static_cast<DTypeQ*>(q.data_ptr()),
/*q_offset=*/nullptr, paged_kv, static_cast<DTypeO*>(o.data_ptr()),
/*lse=*/(return_lse ? static_cast<float*>(lse.data_ptr()) : nullptr),
/*alibi_slopes=*/nullptr, num_qo_heads, window_left, logits_soft_cap,
sm_scale, rope_scale, rope_theta);
/*alibi_slopes=*/nullptr, num_qo_heads, q_stride_n, q_stride_h, window_left,
logits_soft_cap, sm_scale, rope_scale, rope_theta);

DTypeO* tmp_v = nullptr;
float* tmp_s = nullptr;
Expand Down
12 changes: 7 additions & 5 deletions flashinfer-aot/csrc_aot/batch_prefill.cu
Original file line number Diff line number Diff line change
Expand Up @@ -237,6 +237,10 @@ std::vector<torch::Tensor> BatchPrefillWithPagedKVCacheRun(
auto q_scalar_type = q.scalar_type();
auto kv_scalar_type = paged_k_cache.scalar_type();

// get q_stride_n and q_stride_h
const auto q_stride_n = q.stride(0);
const auto q_stride_h = q.stride(1);

// get kv_cache_strides
const int64_t* kv_cache_strides = nullptr;
auto k_strides = paged_k_cache.strides();
Expand All @@ -254,8 +258,7 @@ std::vector<torch::Tensor> BatchPrefillWithPagedKVCacheRun(
paged_kv_t<DTypeKV, IdType> paged_kv(
num_kv_heads, page_size, HEAD_DIM, batch_size, kv_layout,
static_cast<DTypeKV*>(paged_k_cache.data_ptr()),
static_cast<DTypeKV*>(paged_v_cache.data_ptr()),
kv_cache_strides,
static_cast<DTypeKV*>(paged_v_cache.data_ptr()), kv_cache_strides,
static_cast<IdType*>(paged_kv_indices.data_ptr()),
static_cast<IdType*>(paged_kv_indptr.data_ptr()),
static_cast<IdType*>(paged_kv_last_page_len.data_ptr()));
Expand All @@ -266,7 +269,6 @@ std::vector<torch::Tensor> BatchPrefillWithPagedKVCacheRun(
get_variant_code(/*use_custom_mask=*/MASK_MODE == MaskMode::kCustom,
/*use_sliding_window=*/true, USE_LOGITS_SOFT_CAP,
/*use_alibi_slopes=*/false)>;

PagedParamsT params(
static_cast<DTypeQ*>(q.data_ptr()), paged_kv,
maybe_custom_mask.has_value() ? static_cast<uint8_t*>(maybe_custom_mask->data_ptr())
Expand All @@ -276,8 +278,8 @@ std::vector<torch::Tensor> BatchPrefillWithPagedKVCacheRun(
: nullptr,
/*q_offset=*/nullptr, static_cast<DTypeO*>(o.data_ptr()),
/*lse=*/return_lse ? static_cast<float*>(lse.data_ptr()) : nullptr,
/*alibi_slopes=*/nullptr, num_qo_heads, window_left, logits_soft_cap, sm_scale,
rope_scale, rope_theta);
/*alibi_slopes=*/nullptr, num_qo_heads, q_stride_n, q_stride_h, window_left,
logits_soft_cap, sm_scale, rope_scale, rope_theta);

DTypeO* tmp_v = nullptr;
float* tmp_s = nullptr;
Expand Down
6 changes: 4 additions & 2 deletions include/flashinfer/attention/decode.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -439,6 +439,8 @@ __global__ void BatchDecodeWithPagedKVCacheKernel(const __grid_constant__
vec_t<float, vec_size> q_vec;
vec_t<float, vec_size> freq;
int32_t q_offset_val = q_offset == nullptr ? (kv_len - 1) : q_offset[batch_idx];
const uint32_t q_stride_n = params.q_stride_n;
const uint32_t q_stride_h = params.q_stride_h;
if constexpr (POS_ENCODING_MODE == PosEncodingMode::kRoPELlama) {
const float rope_rcp_scale = params.rope_rcp_scale;
const float rope_rcp_theta = params.rope_rcp_theta;
Expand All @@ -450,10 +452,10 @@ __global__ void BatchDecodeWithPagedKVCacheKernel(const __grid_constant__
}
// apply rotary embedding to q matrix
q_vec = vec_apply_llama_rope<vec_size, bdx>(
q + (batch_idx * num_qo_heads + qo_head_idx) * head_dim, freq, q_offset_val);
q + batch_idx * q_stride_n + qo_head_idx * q_stride_h, freq, q_offset_val);
} else {
// do not apply rotary embedding to q matrix
q_vec.cast_load(q + (batch_idx * num_qo_heads + qo_head_idx) * head_dim + tx * vec_size);
q_vec.cast_load(q + batch_idx * q_stride_n + qo_head_idx * q_stride_h + tx * vec_size);
}
#pragma unroll
for (uint32_t i = 0; i < vec_size; ++i) {
Expand Down
9 changes: 7 additions & 2 deletions include/flashinfer/attention/decode_params.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -119,6 +119,8 @@ struct BatchDecodeParams {
float* alibi_slopes;
uint32_t padded_batch_size;
uint32_t num_qo_heads;
IdType q_stride_n;
IdType q_stride_h;
int32_t window_left;
float logits_soft_cap;
float sm_scale;
Expand All @@ -135,8 +137,9 @@ struct BatchDecodeParams {
__device__ __host__ BatchDecodeParams(DTypeQ* q, IdType* q_offset,
paged_kv_t<DTypeKV, IdType> paged_kv, DTypeO* o, float* lse,
float* alibi_slopes, uint32_t num_qo_heads,
int32_t window_left, float logits_soft_cap, float sm_scale,
float rope_scale, float rope_theta)
IdType q_stride_n, IdType q_stride_h, int32_t window_left,
float logits_soft_cap, float sm_scale, float rope_scale,
float rope_theta)
: q(q),
q_offset(q_offset),
paged_kv(paged_kv),
Expand All @@ -145,6 +148,8 @@ struct BatchDecodeParams {
alibi_slopes(alibi_slopes),
padded_batch_size(0),
num_qo_heads(num_qo_heads),
q_stride_n(q_stride_n),
q_stride_h(q_stride_h),
window_left(window_left),
logits_soft_cap(logits_soft_cap),
sm_scale(sm_scale),
Expand Down
2 changes: 1 addition & 1 deletion include/flashinfer/attention/prefill.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -1867,7 +1867,7 @@ __launch_bounds__(NUM_WARPS_Q* NUM_WARPS_KV* WARP_SIZE) void BatchPrefillWithPag
const uint32_t qo_packed_idx_base =
(qo_tile_idx * NUM_WARPS_Q + get_warp_idx_q<NUM_WARPS_Q, NUM_WARPS_KV>()) * NUM_FRAGS_Q *
16;
const uint32_t q_stride_n = num_qo_heads * head_dim, q_stride_h = head_dim;
const uint32_t q_stride_n = params.q_stride_n, q_stride_h = params.q_stride_h;
constexpr SwizzleMode swizzle_mode_q = SwizzleMode::k128B;
smem_t<swizzle_mode_q> qo_smem(smem);
DTypeQ* q_ptr_base = q + get_elem_offset_impl(q_indptr[request_idx], kv_head_idx * group_size,
Expand Down
10 changes: 7 additions & 3 deletions include/flashinfer/attention/prefill_params.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -212,6 +212,8 @@ struct BatchPrefillPagedParams {
float* lse;
float* alibi_slopes;
uint32_t num_qo_heads;
IdType q_stride_n;
IdType q_stride_h;
int32_t window_left;
float logits_soft_cap;
float sm_scale;
Expand All @@ -232,9 +234,9 @@ struct BatchPrefillPagedParams {
__host__ BatchPrefillPagedParams(DTypeQ* q, paged_kv_t<DTypeKV, IdType> paged_kv,
uint8_t* custom_mask, IdType* q_indptr, IdType* qk_indptr,
IdType* q_offset, DTypeO* o, float* lse, float* alibi_slopes,
uint32_t num_qo_heads, int32_t window_left,
float logits_soft_cap, float sm_scale, float rope_scale,
float rope_theta)
uint32_t num_qo_heads, IdType q_stride_n, IdType q_stride_h,
int32_t window_left, float logits_soft_cap, float sm_scale,
float rope_scale, float rope_theta)
: q(q),
paged_kv(paged_kv),
custom_mask(custom_mask),
Expand All @@ -245,6 +247,8 @@ struct BatchPrefillPagedParams {
lse(lse),
alibi_slopes(alibi_slopes),
num_qo_heads(num_qo_heads),
q_stride_n(q_stride_n),
q_stride_h(q_stride_h),
window_left(window_left),
logits_soft_cap(logits_soft_cap),
sm_scale(sm_scale),
Expand Down
5 changes: 4 additions & 1 deletion python/flashinfer/jit/batch_decode_templ.py
Original file line number Diff line number Diff line change
Expand Up @@ -100,6 +100,9 @@
void* float_buffer = static_cast<void*>(float_workspace_buffer.data_ptr());
void* int_buffer = static_cast<void*>(int_workspace_buffer.data_ptr());
const auto q_stride_n = q.stride(0);
const auto q_stride_h = q.stride(1);
const int64_t* kv_cache_strides = nullptr;
auto k_strides = paged_k_cache.strides();
Expand All @@ -121,7 +124,7 @@
/*q_offset=*/nullptr, paged_kv, static_cast<{{ dtype_o }}*>(o.data_ptr()),
/*lse=*/(return_lse ? static_cast<float*>(lse.data_ptr()) : nullptr),
{% if use_alibi == "true" %}static_cast<float*>(alibi_slopes->data_ptr()){% else %}nullptr{% endif %},
num_qo_heads, window_left, logits_soft_cap, sm_scale, rope_scale, rope_theta);
num_qo_heads, q_stride_n, q_stride_h, window_left, logits_soft_cap, sm_scale, rope_scale, rope_theta);
{{ dtype_o }}* tmp_v = nullptr;
float* tmp_s = nullptr;
Expand Down
5 changes: 4 additions & 1 deletion python/flashinfer/jit/batch_prefill_templ.py
Original file line number Diff line number Diff line change
Expand Up @@ -195,6 +195,9 @@
void* float_buffer_ptr = static_cast<void*>(float_workspace_buffer.data_ptr());
void* int_buffer_ptr = static_cast<void*>(int_workspace_buffer.data_ptr());
const auto q_stride_n = q.stride(0);
const auto q_stride_h = q.stride(1);
const int64_t* kv_cache_strides = nullptr;
auto k_strides = paged_k_cache.strides();
Expand All @@ -221,7 +224,7 @@
static_cast<{{ dtype_o }}*>(o.data_ptr()),
/*lse=*/return_lse ? static_cast<float*>(lse.data_ptr()) : nullptr,
{% if use_alibi == "true" %}static_cast<float*>(maybe_alibi_slopes->data_ptr()){% else %}nullptr{% endif %},
num_qo_heads, window_left, logits_soft_cap, sm_scale, rope_scale, rope_theta);
num_qo_heads, q_stride_n, q_stride_h, window_left, logits_soft_cap, sm_scale, rope_scale, rope_theta);
{{ dtype_o }}* tmp_v = nullptr;
float* tmp_s = nullptr;
Expand Down
77 changes: 77 additions & 0 deletions tests/test_non_contiguous_decode.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
import torch
import pytest
import flashinfer


@pytest.mark.parametrize("batch_size", [1, 19, 99])
@pytest.mark.parametrize("page_size", [1, 5])
@pytest.mark.parametrize("seq_len", [1])
@pytest.mark.parametrize("num_kv_heads", [1, 4, 8])
@pytest.mark.parametrize("num_qo_heads", [4, 8])
@pytest.mark.parametrize("head_dim", [64, 128, 256])
def test_batch_paged_decode_packed_input(
batch_size,
page_size,
seq_len,
num_kv_heads,
num_qo_heads,
head_dim,
):
if num_qo_heads % num_kv_heads != 0:
pytest.skip("num_qo_heads must be a multiple of num_kv_heads")
nnz = batch_size * seq_len
num_pages_per_req = (seq_len + page_size - 1) // page_size
num_pages = batch_size * num_pages_per_req
last_page_len = (seq_len - 1) % page_size + 1
k_cache = torch.randn(
size=(num_pages, page_size, num_kv_heads, head_dim),
dtype=torch.float16,
device="cuda:0",
)
v_cache = torch.randn_like(k_cache)
paged_kv_cache = (k_cache, v_cache)
workspace_buffer = torch.empty(
(256 * 1024 * 1024,), dtype=torch.uint8, device="cuda:0"
)
paged_kv_indptr = torch.tensor(
[i * num_pages_per_req for i in range(batch_size + 1)],
dtype=torch.int32,
device="cuda:0",
)
paged_kv_indices = torch.tensor(
list(range(num_pages)), dtype=torch.int32, device="cuda:0"
)
paged_kv_last_page_len = torch.tensor(
[last_page_len for _ in range(batch_size)], dtype=torch.int32, device="cuda:0"
)

wrapper = flashinfer.BatchDecodeWithPagedKVCacheWrapper(workspace_buffer)
wrapper.plan(
indptr=paged_kv_indptr,
indices=paged_kv_indices,
last_page_len=paged_kv_last_page_len,
num_qo_heads=num_qo_heads,
num_kv_heads=num_kv_heads,
head_dim=head_dim,
page_size=page_size,
)

qkv_packed = torch.randn(
size=(nnz, (num_qo_heads + 2 * num_kv_heads) * head_dim),
dtype=torch.float16,
device="cuda:0",
)
qkv_split_idx = (
num_qo_heads * head_dim,
num_kv_heads * head_dim,
num_kv_heads * head_dim,
)
q, _, _ = qkv_packed.split(qkv_split_idx, dim=-1)
q = q.view(-1, num_qo_heads, head_dim)
o_packed = wrapper.run(q, paged_kv_cache)
o_contiguous = wrapper.run(q.contiguous(), paged_kv_cache)
torch.testing.assert_close(o_packed, o_contiguous, rtol=1e-3, atol=1e-3)


if __name__ == "__main__":
test_batch_paged_decode_packed_input(37, 127, 1, 4, 64, 128)
79 changes: 79 additions & 0 deletions tests/test_non_contiguous_prefill.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,6 +96,85 @@ def test_batch_ragged_prefill_packed_input(
torch.testing.assert_close(o_packed, o_contiguous, rtol=1e-3, atol=1e-3)


@pytest.mark.parametrize("batch_size", [1, 19, 99])
@pytest.mark.parametrize("page_size", [1, 5])
@pytest.mark.parametrize("seq_len", [1, 7, 127, 257])
@pytest.mark.parametrize("num_kv_heads", [1, 4, 8])
@pytest.mark.parametrize("num_qo_heads", [4, 8])
@pytest.mark.parametrize("head_dim", [64, 128, 256])
@pytest.mark.parametrize("causal", [True, False])
def test_batch_paged_prefill_packed_input(
batch_size,
page_size,
seq_len,
num_kv_heads,
num_qo_heads,
head_dim,
causal,
):
if num_qo_heads % num_kv_heads != 0:
pytest.skip("num_qo_heads must be a multiple of num_kv_heads")

nnz = batch_size * seq_len
num_pages_per_req = (seq_len + page_size - 1) // page_size
num_pages = batch_size * num_pages_per_req
last_page_len = (seq_len - 1) % page_size + 1
k_cache = torch.randn(
size=(num_pages, page_size, num_kv_heads, head_dim),
dtype=torch.float16,
device="cuda:0",
)
v_cache = torch.randn_like(k_cache)
paged_kv_cache = (k_cache, v_cache)
workspace_buffer = torch.empty(
(256 * 1024 * 1024,), dtype=torch.uint8, device="cuda:0"
)
qo_indptr = torch.tensor(
[i * seq_len for i in range(batch_size + 1)], dtype=torch.int32, device="cuda:0"
)
paged_kv_indptr = torch.tensor(
[i * num_pages_per_req for i in range(batch_size + 1)],
dtype=torch.int32,
device="cuda:0",
)
paged_kv_indices = torch.tensor(
list(range(num_pages)), dtype=torch.int32, device="cuda:0"
)
paged_kv_last_page_len = torch.tensor(
[last_page_len for _ in range(batch_size)], dtype=torch.int32, device="cuda:0"
)
wrapper = flashinfer.BatchPrefillWithPagedKVCacheWrapper(workspace_buffer)
wrapper.plan(
qo_indptr=qo_indptr,
paged_kv_indptr=paged_kv_indptr,
paged_kv_indices=paged_kv_indices,
paged_kv_last_page_len=paged_kv_last_page_len,
num_qo_heads=num_qo_heads,
num_kv_heads=num_kv_heads,
head_dim=head_dim,
page_size=page_size,
causal=causal,
)

qkv_packed = torch.randn(
size=(nnz, (num_qo_heads + 2 * num_kv_heads) * head_dim),
dtype=torch.float16,
device="cuda:0",
)
qkv_split_idx = (
num_qo_heads * head_dim,
num_kv_heads * head_dim,
num_kv_heads * head_dim,
)
q, _, _ = qkv_packed.split(qkv_split_idx, dim=-1)
# pretend that we have already appended k/v to paged_kv table
q = q.view(-1, num_qo_heads, head_dim)
o_packed = wrapper.run(q, paged_kv_cache)
o_contiguous = wrapper.run(q.contiguous(), paged_kv_cache)
torch.testing.assert_close(o_packed, o_contiguous, rtol=1e-3, atol=1e-3)


if __name__ == "__main__":
test_single_prefill_packed_input(127, 4, 4, 64, True)
test_batch_ragged_prefill_packed_input(37, 127, 4, 4, 64, True)
test_batch_paged_prefill_packed_input(37, 5, 127, 4, 4, 64, True)

0 comments on commit 89f2c4a

Please sign in to comment.