- The command to run tensorboard is:
tensorboard --logdir data/output/lightning_logs
- Create volume: When using the containerized version, first create a volume to hold the data, provide a name for easier reference, e.g.
boombox-data
:
docker volume create --name boombox-data
- Build the container: Execute in the root directory, for Dockerfile to be found:
docker build . -t boombox
- Start Container: To start the container with the volume mounted at with gpu-support, run:
docker run --gpus all -v boombox-data:/BoomboxTransformer/data -t boombox:latest
Note: To run without a specified volume, use:
docker run --gpus all -t boombox:latest
Configuration handling is done with facebook Hydra, the configuration files are hierarchically structured, like so:
├── config.yaml
├── dataset
│ └── noisy_speech.yaml
├── hparams
│ ├── basic.yaml
│ └── lstm.yaml
├── lightning
│ ├── local.yaml
│ └── remote.yaml
└── logging
└── tensorboard.yaml
- Local vs remote: In the
config.yaml
you can specify which setup you want to run, if you run locally without gpu, uselocal
, to run with gpu and half-precision training, enterremote
- Number of gpu's: The number of gpu's used by the model is set under
lightning/remote.yaml
, the default is 1 - Dataset: Urban8k and Librispeech are downloaded and meta-data is created per default, if you have downloaded them already
you can set
download: False
andcreate_meta: False
underdataset/noisy_speech.yaml
to save time