- The classifier in Evaluation is based on keras: https://github.com/fchollet/keras/blob/master/examples/imdb_bidirectional_lstm.py
- The data is available at https://github.com/fuzhenxin/textstyletransferdata
- If there is any problem, please contact Zhenxin Fu (fuzhenxin95@gmail.com)
Evaluation tool is in eval
- put glove embedding in eval/word_emb.
- Please follow
run1.sh
to put test data. - The results of converting test data to style 0 is put in style0.txt and style 1 respectively.
- test1 test2 test3 for different mode (autoencoder, style embedding. multi decoder).
$ python classifier data # process data of classifier
$ python classifier train # train classifier
$ python classifier test test1 # test classifier
# test1 is the test result dir
# results in test1/embedding/style0_classification.txt ...
$cd eval
$python emb_test.py test1 # test1 is the test result dir
# results in test1/embedding/style0_semantics.txt ...
Finally, run python eval.py
to show results collection.
Example:
dir_name model_type transfer_strength content_reservation mixture
================================================================================
test1 embedding8 0.267 0.943880306299 0.208126303212
test1 embedding4 0.485 0.915346000157 0.317023657029
test1 embedding 0.593 0.896598659955 0.356930373024
.................
Thanks for Fangfang Zhang and Yixin Zhang for helping compose data.