Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.
Prophet is open source software released by Facebook's Core Data Science team. It is available for download on CRAN and PyPI.
- Homepage: https://facebook.github.io/prophet/
- HTML documentation: https://facebook.github.io/prophet/docs/quick_start.html
- Issue tracker: https://github.com/facebook/prophet/issues
- Source code repository: https://github.com/facebook/prophet
- Contributing: https://facebook.github.io/prophet/docs/contributing.html
- Prophet R package: https://cran.r-project.org/package=prophet
- Prophet Python package: https://pypi.python.org/pypi/prophet/
- Release blogpost: https://research.fb.com/prophet-forecasting-at-scale/
- Prophet paper: Sean J. Taylor, Benjamin Letham (2018) Forecasting at scale. The American Statistician 72(1):37-45 (https://peerj.com/preprints/3190.pdf).
Prophet is a CRAN package so you can use install.packages
.
install.packages('prophet')
After installation, you can get started!
You can also choose an experimental alternative stan backend called cmdstanr
. Once you've installed prophet
,
follow these instructions to use cmdstanr
instead of rstan
as the backend:
# R
# We recommend running this is a fresh R session or restarting your current session
install.packages(c("cmdstanr", "posterior"), repos = c("https://mc-stan.org/r-packages/", getOption("repos")))
# If you haven't installed cmdstan before, run:
cmdstanr::install_cmdstan()
# Otherwise, you can point cmdstanr to your cmdstan path:
cmdstanr::set_cmdstan_path(path = <your existing cmdstan>)
# Set the R_STAN_BACKEND environment variable
Sys.setenv(R_STAN_BACKEND = "CMDSTANR")
On Windows, R requires a compiler so you'll need to follow the instructions provided by rstan
. The key step is installing Rtools before attempting to install the package.
If you have custom Stan compiler settings, install from source rather than the CRAN binary.
Prophet is on PyPI, so you can use pip
to install it. From v0.6 onwards, Python 2 is no longer supported. As of v1.0, the package name on PyPI is "prophet"; prior to v1.0 it was "fbprophet".
# Install pystan with pip before using pip to install prophet
# pystan>=3.0 is currently not supported
pip install pystan==2.19.1.1
pip install prophet
The default dependency that Prophet has is pystan
. PyStan has its own installation instructions. Install pystan with pip before using pip to install prophet.
You can also choose a (more experimental) alternative stan backend called cmdstanpy
. It requires the CmdStan command line interface and you will have to specify the environment variable STAN_BACKEND
pointing to it, for example:
# bash
$ CMDSTAN=/tmp/cmdstan-2.22.1 STAN_BACKEND=CMDSTANPY pip install prophet
Note that the CMDSTAN
variable is directly related to cmdstanpy
module and can be omitted if your CmdStan binaries are in your $PATH
.
It is also possible to install Prophet with two backends:
# bash
$ CMDSTAN=/tmp/cmdstan-2.22.1 STAN_BACKEND=PYSTAN,CMDSTANPY pip install prophet
After installation, you can get started!
If you upgrade the version of PyStan installed on your system, you may need to reinstall prophet (see here).
Use conda install gcc
to set up gcc. The easiest way to install Prophet is through conda-forge: conda install -c conda-forge prophet
.
On Windows, PyStan requires a compiler so you'll need to follow the instructions. The easiest way to install Prophet in Windows is in Anaconda.
Make sure compilers (gcc, g++, build-essential) and Python development tools (python-dev, python3-dev) are installed. In Red Hat systems, install the packages gcc64 and gcc64-c++. If you are using a VM, be aware that you will need at least 4GB of memory to install prophet, and at least 2GB of memory to use prophet.
- Python package name changed from fbprophet to prophet
- Fixed R Windows build issues to get latest version back on CRAN
- Improvements in serialization, holidays, and R timezone handling
- Plotting improvements
- Built-in json serialization
- Added "flat" growth option
- Bugfixes related to
holidays
andpandas
- Plotting improvements
- Improvements in cross validation, such as parallelization and directly specifying cutoffs
- Fix bugs related to upstream changes in
holidays
andpandas
packages. - Compile model during first use, not during install (to comply with CRAN policy)
cmdstanpy
backend now available in Python- Python 2 no longer supported
- Conditional seasonalities
- Improved cross validation estimates
- Plotly plot in Python
- Bugfixes
- Added holidays functionality
- Bugfixes
- Multiplicative seasonality
- Cross validation error metrics and visualizations
- Parameter to set range of potential changepoints
- Unified Stan model for both trend types
- Improved future trend uncertainty for sub-daily data
- Bugfixes
- Bugfixes
- Forecasting with sub-daily data
- Daily seasonality, and custom seasonalities
- Extra regressors
- Access to posterior predictive samples
- Cross-validation function
- Saturating minimums
- Bugfixes
- Bugfixes
- New options for detecting yearly and weekly seasonality (now the default)
- Initial release
Prophet is licensed under the MIT license.