Skip to content

Python modules to generate fire weather variables with the Canadian Forest Fire Weather Index System, and model fire behavior with the Canadian Forest Fire Behavior Prediction System

License

Notifications You must be signed in to change notification settings

gagreene/cffdrs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

70 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

cffdrs Package

The cffdrs package provides tools for calculating Canadian Forest Fire Danger Rating System (CFFDRS) weather indices and fire behavior, and for generating test rasters for Fire Behavior Prediction (FBP) analysis.

The package consists of three modules:

  1. cffbps.py: Functions for calculating the Fire Behavior Prediction System (FBP) indices.
  2. cffwis.py: Functions for calculating the Fire Weather Index System (FWI) indices.
  3. generate_test_fbp_rasters.py: A script for generating test raster datasets for FBP calculations.

Installation

  1. Clone the repository or download the package files.
  2. Ensure that you have Python 3.x installed.
  3. Install required dependencies:
    pip install numpy

Modules

Key Class: FBP

The FBP class provides various methods to model fire behavior based on specified parameters. Initialize this class with parameters such as fuel type, weather conditions, and fuel moisture codes.

Key Functions
  • invertWindAspect(): Inverts the wind direction and aspect by 180°.
  • calcSF(): Calculates the slope factor.
  • calcISZ(): Calculates the initial spread index with no wind/no slope effects.
  • calcFMC(): Computes the foliar moisture content (FMC) and foliar moisture effect (FME).
  • calcROS(): Models the fire rate of spread.
  • calcSFC(): Calculates forest floor consumption, woody fuel consumption, and total surface fuel consumption.
  • getCBH_CFL(): Retrieves the default canopy base height (CBH) and canopy fuel load (CFL) for a specified fuel type.
  • calcCSFI(): Calculates the critical surface fire intensity.
  • calcRSO(): Computes the critical surface fire rate of spread.
  • calcCFB(): Determines crown fraction burned.
  • calcFireType(): Calculates the fire type (surface, intermittent crown, or active crown).
  • calcCFC(): Determines the crown fuel consumed.
  • calcC6hfros(): Calculates the crown and total head fire rate of spread for the C6 fuel type.
  • calcTFC(): Computes the total fuel consumed.
  • calcHFI(): Calculates the head fire intensity.
  • runFBP(): Automatically runs the fire behavior model using all the methods above.

Usage Example

from cffbps import FBP

# Initialize the FBP class with required parameters
fbp_instance = FBP(
    fuel_type=1, 
    wx_date=20240516, 
    lat=62.245533, 
    long=-133.840363, 
    elevation=1180,
    slope=8, 
    aspect=60, 
    ws=24, 
    wd=266, 
    ffmc=92, 
    bui=31, 
    pc=50, 
    pdf=35, 
    gfl=0.35, 
    gcf=80, 
    out_request=['fire_type', 'hfros', 'hfi']
)

# Run the fire behavior model and retrieve outputs
results = fbp_instance.runFBP()

2. cffwis.py - Fire Weather Index System (FWI) Calculations

This module contains functions to calculate FWI values based on environmental factors. FWI indices are used for wildfire risk assessment.

Key Functions

  • hourlyFFMC(): Computes hourly Fine Fuel Moisture Code (FFMC) values.
  • dailyFFMC(): Calculates daily FFMC values.
  • dailyDMC(): Determines the daily Drought Code (DMC).
  • dailyDC(): Calculates the daily Drought Code (DC).
  • dailyISI(): Calculates the Initial Spread Index (ISI).
  • dailyBUI(): Computes the Build Up Index (BUI).
  • dailyFWI(): Calculates the Fire Weather Index (FWI).
  • dailyDSR(): Determines the Daily Severity Rating (DSR).
  • startupDC(): Computes the Drought Code at the start of a season after overwintering.

Usage Example

from cffwis import dailyFFMC, dailyISI, dailyBUI

# Calculate FFMC, ISI, and BUI based on weather inputs
ffmc = dailyFFMC(ffmc0=85, temp=15, rh=50, wind=10, precip=0)
isi = dailyISI(wind=10, ffmc=ffmc)
bui = dailyBUI(dmc=20, dc=30)

3. generate_test_fbp_rasters.py - Generate Test Raster Data for FBP

This script generates test raster datasets for FBP analysis, useful for simulating fire behavior under different conditions. It requires an input folder with a FuelType.tif file.

Key Function

  • gen_test_data(): Generates test raster files for various parameters, saved in the Test_Data/Inputs directory.

Usage Example

from generate_test_fbp_rasters import gen_test_data

# Generate test raster data with specified parameters
gen_test_data(
    wx_date=20160516, 
    lat=62.245533, 
    long=-133.840363, 
    elevation=1180, 
    slope=8, 
    aspect=60, 
    ws=24, 
    wd=266, 
    ffmc=92, 
    bui=31
)

Running Tests and Multiprocessing

You can test various functions in cffbps.py with the _testFBP function, which supports numeric, array, raster, and raster multiprocessing testing modes.

from cffbps import _testFBP

# Test various modes
_testFBP(
    test_functions=['all'], 
    wx_date=20240516, 
    lat=62.245533, 
    long=-133.840363, 
    elevation=1180,
    slope=8, 
    aspect=60, 
    ws=24, 
    wd=266, 
    ffmc=92, 
    bui=31, 
    pc=50, 
    pdf=35, 
    gfl=0.35, 
    gcf=80, 
    out_request=['fire_type', 'hfros', 'hfi']
)

License

This project is licensed under the MIT License. See the LICENSE file for details.

About

Python modules to generate fire weather variables with the Canadian Forest Fire Weather Index System, and model fire behavior with the Canadian Forest Fire Behavior Prediction System

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages