PyTorch Implementation of Network Pruning via Performance Maximization (CVPR 2021).
pytorch==1.7.1
torchvision==0.8.2
To train a base model
CUDA_VISIBLE_DEVICES=0 python train_model.py
To train the pruning algorithm
CUDA_VISIBLE_DEVICES=0 python resnet_pm.py --epm_flag True --nf 15 --reg_w 2 --base 3.0
To prune the model
python pruning_resnet.py
To finetune the model
CUDA_VISIBLE_DEVICES=0 python train_model.py --train_base False
If you found this repository is helpful, please consider to cite our paper:
@InProceedings{Gao_2021_CVPR,
author = {Gao, Shangqian and Huang, Feihu and Cai, Weidong and Huang, Heng},
title = {Network Pruning via Performance Maximization},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2021},
pages = {9270-9280}
}