Skip to content

Commit

Permalink
Initial release
Browse files Browse the repository at this point in the history
  • Loading branch information
ggerganov committed Mar 10, 2023
0 parents commit 26c0846
Show file tree
Hide file tree
Showing 9 changed files with 13,094 additions and 0 deletions.
21 changes: 21 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
*.o
*.a
.cache/
.vs/
.vscode/
.DS_Store

build/
build-em/
build-debug/
build-release/
build-static/
build-no-accel/
build-sanitize-addr/
build-sanitize-thread/

/main
/quantize

arm_neon.h
compile_commands.json
203 changes: 203 additions & 0 deletions Makefile
Original file line number Diff line number Diff line change
@@ -0,0 +1,203 @@
ifndef UNAME_S
UNAME_S := $(shell uname -s)
endif

ifndef UNAME_P
UNAME_P := $(shell uname -p)
endif

ifndef UNAME_M
UNAME_M := $(shell uname -m)
endif

CCV := $(shell $(CC) --version | head -n 1)
CXXV := $(shell $(CXX) --version | head -n 1)

# Mac OS + Arm can report x86_64
# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
ifeq ($(UNAME_S),Darwin)
ifneq ($(UNAME_P),arm)
SYSCTL_M := $(shell sysctl -n hw.optional.arm64)
ifeq ($(SYSCTL_M),1)
# UNAME_P := arm
# UNAME_M := arm64
warn := $(warning Your arch is announced as x86_64, but it seems to actually be ARM64. Not fixing that can lead to bad performance. For more info see: https://github.com/ggerganov/whisper.cpp/issues/66\#issuecomment-1282546789)
endif
endif
endif

#
# Compile flags
#

CFLAGS = -I. -O3 -DNDEBUG -std=c11 -fPIC
CXXFLAGS = -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC
LDFLAGS =

# OS specific
# TODO: support Windows
ifeq ($(UNAME_S),Linux)
CFLAGS += -pthread
CXXFLAGS += -pthread
endif
ifeq ($(UNAME_S),Darwin)
CFLAGS += -pthread
CXXFLAGS += -pthread
endif
ifeq ($(UNAME_S),FreeBSD)
CFLAGS += -pthread
CXXFLAGS += -pthread
endif
ifeq ($(UNAME_S),Haiku)
CFLAGS += -pthread
CXXFLAGS += -pthread
endif

# Architecture specific
# TODO: probably these flags need to be tweaked on some architectures
# feel free to update the Makefile for your architecture and send a pull request or issue
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
ifeq ($(UNAME_S),Darwin)
CFLAGS += -mf16c
AVX1_M := $(shell sysctl machdep.cpu.features)
ifneq (,$(findstring FMA,$(AVX1_M)))
CFLAGS += -mfma
endif
ifneq (,$(findstring AVX1.0,$(AVX1_M)))
CFLAGS += -mavx
endif
AVX2_M := $(shell sysctl machdep.cpu.leaf7_features)
ifneq (,$(findstring AVX2,$(AVX2_M)))
CFLAGS += -mavx2
endif
else ifeq ($(UNAME_S),Linux)
AVX1_M := $(shell grep "avx " /proc/cpuinfo)
ifneq (,$(findstring avx,$(AVX1_M)))
CFLAGS += -mavx
endif
AVX2_M := $(shell grep "avx2 " /proc/cpuinfo)
ifneq (,$(findstring avx2,$(AVX2_M)))
CFLAGS += -mavx2
endif
FMA_M := $(shell grep "fma " /proc/cpuinfo)
ifneq (,$(findstring fma,$(FMA_M)))
CFLAGS += -mfma
endif
F16C_M := $(shell grep "f16c " /proc/cpuinfo)
ifneq (,$(findstring f16c,$(F16C_M)))
CFLAGS += -mf16c
endif
SSE3_M := $(shell grep "sse3 " /proc/cpuinfo)
ifneq (,$(findstring sse3,$(SSE3_M)))
CFLAGS += -msse3
endif
else ifeq ($(UNAME_S),Haiku)
AVX1_M := $(shell sysinfo -cpu | grep "AVX ")
ifneq (,$(findstring avx,$(AVX1_M)))
CFLAGS += -mavx
endif
AVX2_M := $(shell sysinfo -cpu | grep "AVX2 ")
ifneq (,$(findstring avx2,$(AVX2_M)))
CFLAGS += -mavx2
endif
FMA_M := $(shell sysinfo -cpu | grep "FMA ")
ifneq (,$(findstring fma,$(FMA_M)))
CFLAGS += -mfma
endif
F16C_M := $(shell sysinfo -cpu | grep "F16C ")
ifneq (,$(findstring f16c,$(F16C_M)))
CFLAGS += -mf16c
endif
else
CFLAGS += -mfma -mf16c -mavx -mavx2
endif
endif
ifeq ($(UNAME_M),amd64)
CFLAGS += -mavx -mavx2 -mfma -mf16c
endif
ifneq ($(filter ppc64%,$(UNAME_M)),)
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
ifneq (,$(findstring POWER9,$(POWER9_M)))
CFLAGS += -mpower9-vector
endif
# Require c++23's std::byteswap for big-endian support.
ifeq ($(UNAME_M),ppc64)
CXXFLAGS += -std=c++23 -DGGML_BIG_ENDIAN
endif
endif
ifndef WHISPER_NO_ACCELERATE
# Mac M1 - include Accelerate framework
ifeq ($(UNAME_S),Darwin)
CFLAGS += -DGGML_USE_ACCELERATE
LDFLAGS += -framework Accelerate
endif
endif
ifdef WHISPER_OPENBLAS
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas
LDFLAGS += -lopenblas
endif
ifdef WHISPER_GPROF
CFLAGS += -pg
CXXFLAGS += -pg
endif
ifneq ($(filter aarch64%,$(UNAME_M)),)
CFLAGS += -mcpu=native
CXXFLAGS += -mcpu=native
endif
ifneq ($(filter armv6%,$(UNAME_M)),)
# Raspberry Pi 1, 2, 3
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access
endif
ifneq ($(filter armv7%,$(UNAME_M)),)
# Raspberry Pi 4
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
endif
ifneq ($(filter armv8%,$(UNAME_M)),)
# Raspberry Pi 4
CFLAGS += -mfp16-format=ieee -mno-unaligned-access
endif

#
# Print build information
#

$(info I llama.cpp build info: )
$(info I UNAME_S: $(UNAME_S))
$(info I UNAME_P: $(UNAME_P))
$(info I UNAME_M: $(UNAME_M))
$(info I CFLAGS: $(CFLAGS))
$(info I CXXFLAGS: $(CXXFLAGS))
$(info I LDFLAGS: $(LDFLAGS))
$(info I CC: $(CCV))
$(info I CXX: $(CXXV))
$(info )

default: main quantize

#
# Build library
#

ggml.o: ggml.c ggml.h
$(CC) $(CFLAGS) -c ggml.c -o ggml.o

utils.o: utils.cpp utils.h
$(CXX) $(CXXFLAGS) -c utils.cpp -o utils.o

clean:
rm -f *.o main quantize

main: main.cpp ggml.o utils.o
$(CXX) $(CXXFLAGS) main.cpp ggml.o utils.o -o main $(LDFLAGS)
./main -h

quantize: quantize.cpp ggml.o utils.o
$(CXX) $(CXXFLAGS) quantize.cpp ggml.o utils.o -o quantize $(LDFLAGS)

#
# Tests
#

.PHONY: tests
tests:
bash ./tests/run-tests.sh
136 changes: 136 additions & 0 deletions convert-pth-to-ggml.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,136 @@
# Convert a LLaMA model checkpoint to a ggml compatible file
#
# Load the model using Torch
# Iterate over all variables and write them to a binary file.
#
# For each variable, write the following:
# - Number of dimensions (int)
# - Name length (int)
# - Dimensions (int[n_dims])
# - Name (char[name_length])
# - Data (float[n_dims])
#
# By default, the bigger matrices are converted to 16-bit floats.
# This can be disabled by adding the "use-f32" CLI argument.
#
# At the start of the ggml file we write the model parameters
# and vocabulary.
#

import sys
import json
import struct
import numpy as np
import torch

from sentencepiece import SentencePieceProcessor

if len(sys.argv) < 3:
print("Usage: convert-ckpt-to-ggml.py dir-model ftype\n")
print(" ftype == 0 -> float32")
print(" ftype == 1 -> float16")
sys.exit(1)

# output in the same directory as the model
dir_model = sys.argv[1]
fname_out = sys.argv[1] + "/ggml-model.bin"

fname_hparams = sys.argv[1] + "/params.json"
fname_model = sys.argv[1] + "/consolidated.00.pth"
fname_tokenizer = sys.argv[1] + "/../tokenizer.model"

# possible data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]

ftype = 1
if len(sys.argv) > 2:
ftype = int(sys.argv[2])
if ftype < 0 or ftype > 1:
print("Invalid ftype: " + str(ftype))
sys.exit(1)
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"

with open(fname_hparams, "r") as f:
hparams = json.load(f)

tokenizer = SentencePieceProcessor(fname_tokenizer)

hparams.update({"vocab_size": tokenizer.vocab_size()})

print(hparams)

model = torch.load(fname_model, map_location="cpu")

fout = open(fname_out, "wb")

fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
fout.write(struct.pack("i", hparams["vocab_size"]))
fout.write(struct.pack("i", hparams["dim"]))
fout.write(struct.pack("i", hparams["multiple_of"]))
fout.write(struct.pack("i", hparams["n_heads"]))
fout.write(struct.pack("i", hparams["n_layers"]))
fout.write(struct.pack("i", 64)) # rot
fout.write(struct.pack("i", ftype))

# Is this correct??
for i in range(32000):
# TODO: this is probably wrong - not sure how this tokenizer works
text = tokenizer.decode([29889, i]).encode('utf-8')
# remove the first byte (it's always '.')
text = text[1:]
fout.write(struct.pack("i", len(text)))
fout.write(text)

for k, v in model.items():
name = k
shape = v.shape

# skip layers.X.attention.inner_attention.rope.freqs
if name[-5:] == "freqs":
continue

print("Processing variable: " + name + " with shape: ", shape, " and type: ", v.dtype)

#data = tf.train.load_variable(dir_model, name).squeeze()
data = v.numpy().squeeze()
n_dims = len(data.shape);

# for efficiency - transpose some matrices
# "model/h.*/attn/c_attn/w"
# "model/h.*/attn/c_proj/w"
# "model/h.*/mlp/c_fc/w"
# "model/h.*/mlp/c_proj/w"
#if name[-14:] == "/attn/c_attn/w" or \
# name[-14:] == "/attn/c_proj/w" or \
# name[-11:] == "/mlp/c_fc/w" or \
# name[-13:] == "/mlp/c_proj/w":
# print(" Transposing")
# data = data.transpose()

dshape = data.shape

# default type is fp16
ftype_cur = 1
if ftype == 0 or n_dims == 1:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0

# header
str = name.encode('utf-8')
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
for i in range(n_dims):
fout.write(struct.pack("i", dshape[n_dims - 1 - i]))
fout.write(str);

# data
data.tofile(fout)

fout.close()

print("Done. Output file: " + fname_out)
print("")
Loading

0 comments on commit 26c0846

Please sign in to comment.