Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ggml : revert change to ggml_cpy, add ggml_cont_Nd instead #3275

Merged
merged 1 commit into from
Sep 20, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 49 additions & 1 deletion ggml.c
Original file line number Diff line number Diff line change
Expand Up @@ -6343,7 +6343,7 @@ static struct ggml_tensor * ggml_cpy_impl(
}

// make a view of the destination
struct ggml_tensor * result = b->op == GGML_OP_NONE ? b : ggml_view_tensor(ctx, b);
struct ggml_tensor * result = ggml_view_tensor(ctx, b);
if (strlen(b->name) > 0) {
ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
} else {
Expand Down Expand Up @@ -6406,6 +6406,54 @@ struct ggml_tensor * ggml_cont_inplace(
return ggml_cont_impl(ctx, a, true);
}


// make contiguous, with new shape
GGML_API struct ggml_tensor * ggml_cont_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0) {
return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
}

GGML_API struct ggml_tensor * ggml_cont_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1) {
return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
}

GGML_API struct ggml_tensor * ggml_cont_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2) {
return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
}

struct ggml_tensor * ggml_cont_4d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3) {
GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));

bool is_node = false;

struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
ggml_format_name(result, "%s (cont)", a->name);

result->op = GGML_OP_CONT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;

return result;
}


// ggml_reshape

struct ggml_tensor * ggml_reshape(
Expand Down
28 changes: 27 additions & 1 deletion ggml.h
Original file line number Diff line number Diff line change
Expand Up @@ -1049,7 +1049,6 @@ extern "C" {
size_t nb1,
size_t offset);


// a -> b, return view(b)
GGML_API struct ggml_tensor * ggml_cpy(
struct ggml_context * ctx,
Expand All @@ -1072,6 +1071,33 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);

// make contiguous, with new shape
GGML_API struct ggml_tensor * ggml_cont_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0);

GGML_API struct ggml_tensor * ggml_cont_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1);

GGML_API struct ggml_tensor * ggml_cont_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2);

GGML_API struct ggml_tensor * ggml_cont_4d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3);

// return view(a), b specifies the new shape
// TODO: when we start computing gradient, make a copy instead of view
GGML_API struct ggml_tensor * ggml_reshape(
Expand Down
14 changes: 4 additions & 10 deletions llama.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2893,9 +2893,7 @@ static struct ggml_cgraph * llm_build_llama(
ggml_set_name(KQV_merged, "KQV_merged");

// cur = KQV_merged.contiguous().view(n_embd, n_tokens)
cur = ggml_cpy(ctx0,
KQV_merged,
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens));
cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
offload_func_v(cur);
ggml_set_name(cur, "KQV_merged_contiguous");

Expand Down Expand Up @@ -3302,9 +3300,7 @@ static struct ggml_cgraph * llm_build_baichaun(
ggml_set_name(KQV_merged, "KQV_merged");

// cur = KQV_merged.contiguous().view(n_embd, n_tokens)
cur = ggml_cpy(ctx0,
KQV_merged,
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens));
cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
offload_func_v(cur);
ggml_set_name(cur, "KQV_merged_contiguous");

Expand Down Expand Up @@ -3710,7 +3706,7 @@ static struct ggml_cgraph * llm_build_falcon(
offload_func_v(KQV_merged);
ggml_set_name(KQV_merged, "KQV_merged");

cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens));
cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
offload_func_v(cur);
ggml_set_name(cur, "KQV_merged_contiguous");

Expand Down Expand Up @@ -3964,9 +3960,7 @@ static struct ggml_cgraph * llm_build_starcoder(
ggml_set_name(KQV_merged, "KQV_merged");

// cur = KQV_merged.contiguous().view(n_embd, n_tokens)
cur = ggml_cpy(ctx0,
KQV_merged,
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens));
cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
ggml_set_name(cur, "KQV_merged_contiguous");
}

Expand Down