Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

added implementation of DRY sampler #6839

Closed
wants to merge 21 commits into from
Closed
Show file tree
Hide file tree
Changes from 8 commits
Commits
Show all changes
21 commits
Select commit Hold shift + click to select a range
f64dea0
added implementation of DRY sampler
l3utterfly Apr 25, 2024
aea4ad0
fixed editor config check
l3utterfly Apr 25, 2024
4d603e3
added DRY implementation
l3utterfly Apr 25, 2024
75beda2
fixed various issues with sampler pointed out by original creator
l3utterfly Apr 29, 2024
85dadac
added parameter for DRY penalty range, separate from the original rep…
l3utterfly Apr 29, 2024
793e1e2
updated header def for dry sampler to match implementation
l3utterfly Apr 29, 2024
3caec6b
removed unused llama_context in dry sampler
l3utterfly Apr 29, 2024
49e078f
changed array size parameters to size_t
l3utterfly Apr 29, 2024
2f9a36a
Merge branch 'master' into dry-sampler
l3utterfly Jul 29, 2024
802ddd7
added sample_dry_impl
l3utterfly Jul 29, 2024
12bfa78
added llama_sample_dry_impl in header
l3utterfly Jul 29, 2024
0229fc8
added final new line for editor config check
l3utterfly Jul 29, 2024
236da59
fixed int/size_t comparison
l3utterfly Jul 29, 2024
e862def
use int32_t for dry_penalty_last_n due to negative value needed as co…
l3utterfly Jul 29, 2024
9105cf4
Add DRY sampling parameters to gpt_params and server_context
wwoodsTM Aug 5, 2024
20dc562
Delete pr-6839.diff
wwoodsTM Aug 5, 2024
d1676a1
Merge pull request #29 from wwoodsTM/test-dry-sampler
l3utterfly Aug 6, 2024
ed6b909
Merge branch 'master' into dry-sampler
l3utterfly Aug 6, 2024
6579e64
Attempt at slightly optimized vector of strings DRY implementation
wwoodsTM Aug 6, 2024
a18fb2f
Merge remote-tracking branch 'myfork/test-dry-sampler' into test-dry-…
wwoodsTM Aug 6, 2024
190898a
Merge pull request #30 from wwoodsTM/test-dry-sampler
l3utterfly Aug 8, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 36 additions & 15 deletions common/sampling.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -267,13 +267,19 @@ static llama_token_data_array llama_sampling_prepare_impl(

const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));

// repetition penalties
const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
const float penalty_repeat = params.penalty_repeat;
const float penalty_freq = params.penalty_freq;
const float penalty_present = params.penalty_present;

const bool penalize_nl = params.penalize_nl;

// DRY sampler parameters
const float dry_multiplier = params.dry_multiplier;
const float dry_base = params.dry_base;
const uint32_t dry_allowed_length = params.dry_allowed_length;
const uint32_t dry_penalty_last_n = params.dry_penalty_last_n;

auto & prev = ctx_sampling->prev;
auto & cur = ctx_sampling->cur;

Expand Down Expand Up @@ -303,26 +309,41 @@ static llama_token_data_array llama_sampling_prepare_impl(

llama_token_data_array cur_p = { cur.data(), cur.size(), false };

// apply penalties
const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
if (penalty_tokens_used_size) {
const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];

llama_sample_repetition_penalties(ctx_main, &cur_p,
penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);

if (!penalize_nl) {
for (size_t idx = 0; idx < cur_p.size; idx++) {
if (cur_p.data[idx].id == llama_token_nl(llama_get_model(ctx_main))) {
cur_p.data[idx].logit = nl_logit;
break;

// apply repetition penalties
{
const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
if (penalty_tokens_used_size) {
const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];

// repetition penalties
llama_sample_repetition_penalties(ctx_main, &cur_p,
penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);

if (!penalize_nl) {
for (size_t idx = 0; idx < cur_p.size; idx++) {
if (cur_p.data[idx].id == llama_token_nl(llama_get_model(ctx_main))) {
cur_p.data[idx].logit = nl_logit;
break;
}
}
}
}
}

// apply DRY penalties
{
const int penalty_tokens_used_size = std::min(penalty_tokens.size(), (size_t)dry_penalty_last_n);
if (penalty_tokens_used_size) {
llama_sample_dry(&cur_p,
penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
penalty_tokens_used_size, dry_base, dry_multiplier, dry_allowed_length,
params.dry_seq_breakers.data(), params.dry_seq_breakers.size());
}
}

// apply grammar checks before sampling logic
if (apply_grammar && ctx_sampling->grammar != NULL) {
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
Expand Down
5 changes: 5 additions & 0 deletions common/sampling.h
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,10 @@ typedef struct llama_sampling_params {
float mirostat_eta = 0.10f; // learning rate
bool penalize_nl = false; // consider newlines as a repeatable token
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampling_context
float dry_multiplier = 0.0f; // 0.0f = disabled, recommended value: 0.8f
float dry_base = 1.75f;
uint32_t dry_allowed_length = 2;
uint32_t dry_penalty_last_n = -1; // DRY last n tokens to penalize (0 = disable penalty, -1 = context size)
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

An unsigned integer shouldn't be set to -1. That C++ even compiles this is crazy.

There shouldn't be two separate ways to disable the sampler. Setting dry_multiplier to 0 already disables it, no need for a second mechanism.

The correct semantics, IMO, are:

  • last_n = 0: The whole context is searched.
  • last_n > 0: The last last_n tokens are searched.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This will be converted to the maximum value of uint32_t, so ... uh... task failed successfully, I guess. (I will fix this)

setting dry_penalty_last_n=-1 was to keep the same convention as repetition_penalty. I'll update this according to what the maintainer says.


std::vector<llama_sampler_type> samplers_sequence = {
llama_sampler_type::TOP_K,
Expand All @@ -61,6 +65,7 @@ typedef struct llama_sampling_params {
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens

std::vector<llama_token> penalty_prompt_tokens;
std::vector<llama_token> dry_seq_breakers; // sequence breakers for the DRY sampler
bool use_penalty_prompt_tokens = false;
} llama_sampling_params;

Expand Down
100 changes: 95 additions & 5 deletions llama.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -13233,6 +13233,96 @@ void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * can
}
}

void llama_sample_dry(llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float dry_base, float dry_multiplier, int dry_allowed_length, const llama_token * dry_seq_breakers, size_t dry_seq_breakers_size) {
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Parameter order is still inconsistent with definitions above (base, multiplier vs. multiplier, base).

// skip dry sampler if we don't have a previous token
if (last_tokens_size < 1) return;

// get the last token
auto last_token = last_tokens[last_tokens_size - 1];

// if last token is part of the sequence breakers, skip whole sampler
if (std::find(dry_seq_breakers, dry_seq_breakers + dry_seq_breakers_size, last_token) != dry_seq_breakers + dry_seq_breakers_size) {
return;
}

// create an unordered map of "next tokens" <-> max match length
std::unordered_map<llama_token, size_t> match_lengths;

// loop through each previous token (exclude the last token)
for (size_t i = 0; i < last_tokens_size - 1; ++i) {
// skip if the compare token is not the same as the last token
if (last_tokens[i] != last_token) {
continue;
}

// get the next token (i + 1 is always less than last_tokens_size)
auto next_token = last_tokens[i + 1];
l3utterfly marked this conversation as resolved.
Show resolved Hide resolved

// if next token is part of the sequence breakers, skip
if (std::find(dry_seq_breakers, dry_seq_breakers + dry_seq_breakers_size, next_token) != dry_seq_breakers + dry_seq_breakers_size) {
continue;
}

// try to extend the match backwards (match length starts at 1 because last token is already matched)
size_t match_length = 1;

// loop through the previous tokens
for (;; match_length++) {
// if we have reached the start of our last tokens, break
if (i < match_length) break;

// compare token starts at our prev index, going backwards by match length
auto compare_token = last_tokens[i - match_length];

// head token starts at the end of last tokens, going backwards by match length, minus 1 because we start at the last token itself
auto head_token = last_tokens[last_tokens_size - 1 - match_length];

// break out of the match if any tokens don't match
if (compare_token != head_token) {
break;
l3utterfly marked this conversation as resolved.
Show resolved Hide resolved
}

// if compare token is part of the sequence breakers, break out of the match
if (std::find(dry_seq_breakers, dry_seq_breakers + dry_seq_breakers_size, compare_token) != dry_seq_breakers + dry_seq_breakers_size) {
break;
}
}

// Check if the next token exists in the map
auto it = match_lengths.find(next_token);

if (it == match_lengths.end()) {
// Key does not exist, insert the new value
match_lengths[next_token] = match_length;
} else {
// Key exists, update it with the max of the new value or the existing value
it->second = std::max(it->second, match_length);
}
}

// apply penalties
for (const auto& pair : match_lengths) {
auto next_token = pair.first;
auto match_length = pair.second;

// if the match length is greater than or equal to our allowed length in config, we apply penalities
if (match_length >= dry_allowed_length) {

// find our next token in the candidates->data
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Aren't the candidates indices equal to the token ID? In Transformers, this is the case, which is why the original PR doesn't need to search.

If this isn't true for llama.cpp, how are the candidates ordered?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I looked through the creation of candidates. It appears it is true for this case (that the token ID = indices), but it may not always be true. It appears the candidates structure has a flag bool sorted, if it's true, then the candidates are sorted by logits descending.

We can check for that condition here? But I cannot determine if the candidates are guaranteed to have indices = token ID if sorted = false

Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I see, I guess the purpose of sorting by logit is to simplify truncation samplers.

Probably best to keep the current code then. There are of course possible optimizations (such as interchanging the two loops and deleting tokens from match_lengths once they have been found, which should roughly cut the execution time in half), but I'm not sure if they are worth the extra complexity.

for (size_t i = 0; i < candidates->size; ++i) {
if (candidates->data[i].id == next_token) {
// calculate the penalty
float penalty = dry_multiplier * pow(dry_base, match_length - dry_allowed_length);

// apply the dry penalty
candidates->data[i].logit -= penalty;
break;
}
}
}
}
}

void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
if (z >= 1.0f || candidates->size <= 2) {
return;
Expand Down Expand Up @@ -13360,7 +13450,7 @@ void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * c
const int64_t t_start_sample_us = ggml_time_us();

// no need to do anything if there is only one (or zero) candidates
if(candidates_p->size <= 1) {
if (candidates_p->size <= 1) {
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The following changes are in unrelated code and probably shouldn't be in this PR.

return;
}

Expand Down Expand Up @@ -13594,7 +13684,7 @@ llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_
t_start_sample_us = ggml_time_us();

// Compute error as the difference between observed surprise and target surprise value
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
size_t X_idx = std::distance(candidates->data, std::find_if (candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
return candidate.id == X;
}));
float observed_surprise = -log2f(candidates->data[X_idx].p);
Expand All @@ -13616,7 +13706,7 @@ llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_tok
llama_sample_softmax(ctx, candidates);

// Truncate the words with surprise values greater than mu
candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
candidates->size = std::distance(candidates->data, std::find_if (candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
return -log2f(candidate.p) > *mu;
}));

Expand All @@ -13636,7 +13726,7 @@ llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_tok
t_start_sample_us = ggml_time_us();

// Compute error as the difference between observed surprise and target surprise value
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
size_t X_idx = std::distance(candidates->data, std::find_if (candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
return candidate.id == X;
}));
float observed_surprise = -log2f(candidates->data[X_idx].p);
Expand Down Expand Up @@ -15686,7 +15776,7 @@ uint64_t llama_model_n_params(const struct llama_model * model) {
}

struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
auto it = std::find_if (model->tensors_by_name.begin(), model->tensors_by_name.end(),
[name](const std::pair<std::string, struct ggml_tensor *> & it) {
return it.first == name;
});
Expand Down
11 changes: 11 additions & 0 deletions llama.h
Original file line number Diff line number Diff line change
Expand Up @@ -924,6 +924,17 @@ extern "C" {
float p,
size_t min_keep);

/// @details DRY sampler as described in: https://github.com/oobabooga/text-generation-webui/pull/5677
LLAMA_API void llama_sample_dry(
llama_token_data_array * candidates,
const llama_token * last_tokens,
size_t last_tokens_size,
float dry_base,
float dry_multiplier,
int dry_allowed_length,
const llama_token * dry_seq_breakers,
size_t dry_seq_breakers_size);

/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
LLAMA_API void llama_sample_tail_free(
struct llama_context * ctx,
Expand Down
Loading