Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix GLTF light import #53109

Merged
merged 1 commit into from
Sep 27, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 12 additions & 4 deletions modules/gltf/doc_classes/GLTFLight.xml
Original file line number Diff line number Diff line change
Expand Up @@ -7,17 +7,25 @@
<tutorials>
</tutorials>
<members>
<member name="color" type="Color" setter="set_color" getter="get_color" default="Color(0, 0, 0, 1)">
<member name="color" type="Color" setter="set_color" getter="get_color" default="Color(1, 1, 1, 1)">
The [Color] of the light. Defaults to white. A black color causes the light to have no effect.
</member>
<member name="inner_cone_angle" type="float" setter="set_inner_cone_angle" getter="get_inner_cone_angle" default="0.0">
The inner angle of the cone in a spotlight. Must be less than or equal to the outer cone angle.
Within this angle, the light is at full brightness. Between the inner and outer cone angles, there is a transition from full brightness to zero brightness. When creating a Godot [SpotLight3D], the ratio between the inner and outer cone angles is used to calculate the attenuation of the light.
</member>
<member name="intensity" type="float" setter="set_intensity" getter="get_intensity" default="0.0">
<member name="intensity" type="float" setter="set_intensity" getter="get_intensity" default="1.0">
The intensity of the light. This is expressed in candelas (lumens per steradian) for point and spot lights, and lux (lumens per m²) for directional lights. When creating a Godot light, this value is converted to a unitless multiplier.
</member>
<member name="light_type" type="String" setter="set_light_type" getter="get_light_type" default="&quot;&quot;">
The type of the light. The values accepted by Godot are "point", "spot", and "directional", which correspond to Godot's [OmniLight3D], [SpotLight3D], and [DirectionalLight3D] respectively.
</member>
<member name="outer_cone_angle" type="float" setter="set_outer_cone_angle" getter="get_outer_cone_angle" default="0.0">
<member name="outer_cone_angle" type="float" setter="set_outer_cone_angle" getter="get_outer_cone_angle" default="0.785398">
The outer angle of the cone in a spotlight. Must be greater than or equal to the inner angle.
At this angle, the light drops off to zero brightness. Between the inner and outer cone angles, there is a transition from full brightness to zero brightness. If this angle is a half turn, then the spotlight emits in all directions. When creating a Godot [SpotLight3D], the outer cone angle is used as the angle of the spotlight.
</member>
<member name="range" type="float" setter="set_range" getter="get_range" default="0.0">
<member name="range" type="float" setter="set_range" getter="get_range" default="inf">
The range of the light, beyond which the light has no effect. GLTF lights with no range defined behave like physical lights (which have infinite range). When creating a Godot light, the range is clamped to 4096.
</member>
</members>
</class>
6 changes: 3 additions & 3 deletions modules/gltf/gltf_document.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -5074,7 +5074,7 @@ Node3D *GLTFDocument::_generate_light(Ref<GLTFState> state, Node *scene_parent,
const float range = CLAMP(l->range, 0, 4096);
// Doubling the range will double the effective brightness, so we need double attenuation (half brightness).
// We want to have double intensity give double brightness, so we need half the attenuation.
const float attenuation = range / intensity;
const float attenuation = range / (intensity * 2048);
if (l->light_type == "point") {
OmniLight3D *light = memnew(OmniLight3D);
light->set_param(OmniLight3D::PARAM_ATTENUATION, attenuation);
Expand Down Expand Up @@ -5150,13 +5150,13 @@ GLTFLightIndex GLTFDocument::_convert_light(Ref<GLTFState> state, Light3D *p_lig
OmniLight3D *light = cast_to<OmniLight3D>(p_light);
l->range = light->get_param(OmniLight3D::PARAM_RANGE);
float attenuation = p_light->get_param(OmniLight3D::PARAM_ATTENUATION);
l->intensity = l->range / attenuation;
l->intensity = l->range / (attenuation * 2048);
} else if (cast_to<SpotLight3D>(p_light)) {
l->light_type = "spot";
SpotLight3D *light = cast_to<SpotLight3D>(p_light);
l->range = light->get_param(SpotLight3D::PARAM_RANGE);
float attenuation = light->get_param(SpotLight3D::PARAM_ATTENUATION);
l->intensity = l->range / attenuation;
l->intensity = l->range / (attenuation * 2048);
l->outer_cone_angle = Math::deg2rad(light->get_param(SpotLight3D::PARAM_SPOT_ANGLE));

// This equation is the inverse of the import equation (which has a desmos link).
Expand Down
8 changes: 4 additions & 4 deletions modules/gltf/gltf_light.h
Original file line number Diff line number Diff line change
Expand Up @@ -42,12 +42,12 @@ class GLTFLight : public Resource {
static void _bind_methods();

private:
Color color;
float intensity = 0.0f;
Color color = Color(1.0f, 1.0f, 1.0f);
float intensity = 1.0f;
String light_type;
float range = 0.0f;
float range = INFINITY;
float inner_cone_angle = 0.0f;
float outer_cone_angle = 0.0f;
float outer_cone_angle = Math_TAU / 8.0f;

public:
Color get_color();
Expand Down