Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Internal change. #705

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
188 changes: 188 additions & 0 deletions seqio/benchmarks/preprocessors_benchmark.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,188 @@
# Copyright 2023 The SeqIO Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Microbenchmarks for SeqIO preprocessors functions."""

import os

import google_benchmark
from seqio import dataset_providers
from seqio import feature_converters
from seqio import preprocessors
from seqio import test_utils
from seqio import vocabularies
import tensorflow.compat.v2 as tf


Feature = dataset_providers.Feature

_TEST_DIR = os.path.join(
os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'test_data'
)
_SENTENCEPIECE_VOCAB = vocabularies.SentencePieceVocabulary(
os.path.join(_TEST_DIR, 'sentencepiece', 'sentencepiece.model')
)
_OUTPUT_FEATURES = {
'prefix': Feature(_SENTENCEPIECE_VOCAB, add_eos=True),
'suffix': Feature(_SENTENCEPIECE_VOCAB, add_eos=False),
}


@google_benchmark.register
def rekey(state):
og_dataset = tf.data.Dataset.from_tensors(
{'text': 'That is good.', 'other': 'That is bad.'}
)
while state:
_ = preprocessors.rekey(og_dataset, {'inputs': 'other', 'targets': 'text'})


@google_benchmark.register
def tokenize(state):
og_dataset = tf.data.Dataset.from_tensors(
{'prefix': 'This is', 'suffix': 'a test.'}
)
while state:
preprocessors.tokenize(og_dataset, output_features=_OUTPUT_FEATURES)


@google_benchmark.register
def tokenize_3_rank(state):
og_dataset = tf.data.Dataset.from_tensors({
'prefix': tf.ragged.constant(
[[['a', 'b'], ['c']], [['d', 'e'], ['f']], [['g', 'h'], ['i']]]
),
'suffix': tf.ragged.constant(
[[['j'], ['k', 'l', 'm']], [['n'], ['o', 'p']]]
),
})
while state:
preprocessors.tokenize(og_dataset, output_features=_OUTPUT_FEATURES)


@google_benchmark.register
def tokenize_and_append_eos(state):
og_dataset = tf.data.Dataset.from_tensors(
{'prefix': 'This is', 'suffix': 'a test.'}
)
while state:
preprocessors.tokenize_and_append_eos(
og_dataset, output_features=_OUTPUT_FEATURES
)


@google_benchmark.register
def append_eos(state):
"""Microbenchmark for appending EOS."""
og_dataset = tf.data.Dataset.from_tensors({
'inputs': [1, 2, 3],
'targets': [4, 5, 6, 7],
'arrows': [8, 9, 10, 11],
'strings': [[14, 15], [16, 17], [18, 19]],
'feathers': tf.ragged.constant([[20, 21], [], [22, 23, 24, 25, 26]]),
'bows': [12, 13],
})
output_features = {
'inputs': Feature(_SENTENCEPIECE_VOCAB, add_eos=False),
'targets': Feature(_SENTENCEPIECE_VOCAB, add_eos=True),
'arrows': Feature(_SENTENCEPIECE_VOCAB, add_eos=True),
'strings': Feature(_SENTENCEPIECE_VOCAB, add_eos=True),
'feathers': Feature(_SENTENCEPIECE_VOCAB, add_eos=True),
}
while state:
_ = preprocessors.append_eos(og_dataset, output_features)


@google_benchmark.register
def append_eos_after_trim(state):
"""Microbenchmark for appending EOS after trimming."""
og_dataset = tf.data.Dataset.from_tensors({
'inputs': [1, 2, 3],
'targets': [4, 5, 6, 7],
'arrows': [8, 9, 10, 11],
'strings': [[14, 15], [16, 17], [18, 19]],
'feathers': tf.ragged.constant([[20, 21], [], [22, 23, 24, 25, 26]]),
'bows': [12, 13],
})
output_features = {
'inputs': Feature(_SENTENCEPIECE_VOCAB, add_eos=False),
'targets': Feature(_SENTENCEPIECE_VOCAB, add_eos=True),
'arrows': Feature(_SENTENCEPIECE_VOCAB, add_eos=True),
'strings': Feature(_SENTENCEPIECE_VOCAB, add_eos=True),
'feathers': Feature(_SENTENCEPIECE_VOCAB, add_eos=True),
}
sequence_length = {
'inputs': 4,
'targets': 3,
'arrows': 5,
'strings': 3,
'feathers': 4,
}
while state:
_ = preprocessors.append_eos_after_trim(
og_dataset,
output_features=output_features,
sequence_length=sequence_length,
)


@google_benchmark.register
def truncate_inputs_left(state):
og_dataset = tf.data.Dataset.from_tensors({
'inputs': [1, 2, 3],
'targets': [4, 5, 6, 7],
})
sequence_length = {'inputs': 2, 'targets': 4}
while state:
_ = preprocessors.truncate_inputs_left(og_dataset, sequence_length)


@google_benchmark.register
def apply_feature_converter(state):
"""Microbenchmark for applying feature converter."""
x = {'inputs': [8, 7, 1, 0], 'targets': [4, 1, 0], 'redundant_feature': [0]}
ds = test_utils.create_default_dataset(
[x], feature_names=('inputs', 'targets', 'redundant_feature')
)
sequence_length = {'inputs': 8, 'targets': 7}
feature_converter = feature_converters.EncDecFeatureConverter()
while state:
_ = preprocessors.apply_feature_converter(
ds, sequence_length=sequence_length, feature_converter=feature_converter
)


# TODO(b/315985098): Ask mishragaurav@ for a good example and create a test.
# @google_benchmark.register
# def hash_and_tile_subtask_id(state):
# og_dataset = tf.data.Dataset.from_tensors({
# 'inputs': 'This is',
# 'targets': 'a test.',
# 'provenance/task': 'test_task_name',
# })
# while state:
# _ = preprocessors.hash_and_tile_subtask_id(og_dataset)


@google_benchmark.register
def preprocess_tensorflow_examples(state):
og_dataset = tf.data.Dataset.from_tensors({'text': 'Hello', 'label': 'World'})
while state:
_ = preprocessors.preprocess_tensorflow_examples(
og_dataset, 'Input: {text}', 'Output: {label}'
)


if __name__ == '__main__':
google_benchmark.main()
Loading