Skip to content
This repository has been archived by the owner on Jul 13, 2023. It is now read-only.

Commit

Permalink
feat: face and person detection samples (#362)
Browse files Browse the repository at this point in the history
Adds the following region tags:

video_detect_person_beta
video_detect_person_gcs_beta
video_detect_faces_beta
video_detect_faces_gcs_beta
  • Loading branch information
telpirion authored Feb 7, 2020
1 parent cdd947b commit cff2f36
Show file tree
Hide file tree
Showing 3 changed files with 412 additions and 0 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -10,3 +10,4 @@ system-test/*key.json
package-lock.json
.vscode
__pycache__
*.code-workspace
362 changes: 362 additions & 0 deletions samples/analyze.v1p3beta1.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,362 @@
// Copyright 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

'use strict';

async function detectPerson(path) {
//[START video_detect_person_beta]
// Imports the Google Cloud Video Intelligence library + Node's fs library
const Video = require('@google-cloud/video-intelligence').v1p3beta1;
const fs = require('fs');
// Creates a client
const video = new Video.VideoIntelligenceServiceClient();

/**
* TODO(developer): Uncomment the following line before running the sample.
*/
// const path = 'Local file to analyze, e.g. ./my-file.mp4';

// Reads a local video file and converts it to base64
const file = fs.readFileSync(path);
const inputContent = file.toString('base64');

const request = {
inputContent: inputContent,
features: ['PERSON_DETECTION'],
videoContext: {
personDetectionConfig: {
// Must set includeBoundingBoxes to true to get poses and attributes.
includeBoundingBoxes: true,
includePoseLandmarks: true,
includeAttributes: true,
},
},
};
// Detects people in a video
const [operation] = await video.annotateVideo(request);
const results = await operation.promise();
console.log('Waiting for operation to complete...');

// Gets annotations for video
const personAnnotations =
results[0].annotationResults[0].personDetectionAnnotations;

for (const {tracks} of personAnnotations) {
console.log('Person detected:');
for (const {segment, timestampedObjects} of tracks) {
if (segment.startTimeOffset.seconds === undefined) {
segment.startTimeOffset.seconds = 0;
}
if (segment.startTimeOffset.nanos === undefined) {
segment.startTimeOffset.nanos = 0;
}
if (segment.endTimeOffset.seconds === undefined) {
segment.endTimeOffset.seconds = 0;
}
if (segment.endTimeOffset.nanos === undefined) {
segment.endTimeOffset.nanos = 0;
}
console.log(
`\tStart: ${segment.startTimeOffset.seconds}.` +
`${(segment.startTimeOffset.nanos / 1e6).toFixed(0)}s`
);
console.log(
`\tEnd: ${segment.endTimeOffset.seconds}.` +
`${(segment.endTimeOffset.nanos / 1e6).toFixed(0)}s`
);

// Each segment includes timestamped objects that
// include characteristic--e.g. clothes, posture
// of the person detected.
const [firstTimestampedObject] = timestampedObjects;

// Attributes include unique pieces of clothing,
// poses, or hair color.
for (const {name, value} of firstTimestampedObject.attributes) {
console.log(`\tAttribute: ${name}; ` + `Value: ${value}`);
}

// Landmarks in person detection include body parts.
for (const {name, point} of firstTimestampedObject.landmarks) {
console.log(`\tLandmark: ${name}; Vertex: ${point.x}, ${point.y}`);
}
}
}
// [END video_detect_person_beta]
}
async function detectPersonGCS(gcsUri) {
//[START video_detect_person_gcs_beta]
// Imports the Google Cloud Video Intelligence library
const Video = require('@google-cloud/video-intelligence').v1p3beta1;
// Creates a client
const video = new Video.VideoIntelligenceServiceClient();

/**
* TODO(developer): Uncomment the following line before running the sample.
*/
// const gcsUri = 'GCS URI of the video to analyze, e.g. gs://my-bucket/my-video.mp4';

const request = {
inputUri: gcsUri,
features: ['PERSON_DETECTION'],
videoContext: {
personDetectionConfig: {
// Must set includeBoundingBoxes to true to get poses and attributes.
includeBoundingBoxes: true,
includePoseLandmarks: true,
includeAttributes: true,
},
},
};
// Detects people in a video
const [operation] = await video.annotateVideo(request);
const results = await operation.promise();
console.log('Waiting for operation to complete...');

// Gets annotations for video
const personAnnotations =
results[0].annotationResults[0].personDetectionAnnotations;

for (const {tracks} of personAnnotations) {
console.log('Person detected:');

for (const {segment, timestampedObjects} of tracks) {
if (segment.startTimeOffset.seconds === undefined) {
segment.startTimeOffset.seconds = 0;
}
if (segment.startTimeOffset.nanos === undefined) {
segment.startTimeOffset.nanos = 0;
}
if (segment.endTimeOffset.seconds === undefined) {
segment.endTimeOffset.seconds = 0;
}
if (segment.endTimeOffset.nanos === undefined) {
segment.endTimeOffset.nanos = 0;
}
console.log(
`\tStart: ${segment.startTimeOffset.seconds}` +
`.${(segment.startTimeOffset.nanos / 1e6).toFixed(0)}s`
);
console.log(
`\tEnd: ${segment.endTimeOffset.seconds}.` +
`${(segment.endTimeOffset.nanos / 1e6).toFixed(0)}s`
);

// Each segment includes timestamped objects that
// include characteristic--e.g. clothes, posture
// of the person detected.
const [firstTimestampedObject] = timestampedObjects;

// Attributes include unique pieces of clothing,
// poses, or hair color.
for (const {name, value} of firstTimestampedObject.attributes) {
console.log(`\tAttribute: ${name}; ` + `Value: ${value}`);
}

// Landmarks in person detection include body parts.
for (const {name, point} of firstTimestampedObject.landmarks) {
console.log(`\tLandmark: ${name}; Vertex: ${point.x}, ${point.y}`);
}
}
}
// [END video_detect_person_beta]
}
async function detectFaces(path) {
//[START video_detect_faces_beta]
// Imports the Google Cloud Video Intelligence library + Node's fs library
const Video = require('@google-cloud/video-intelligence').v1p3beta1;
const fs = require('fs');
// Creates a client
const video = new Video.VideoIntelligenceServiceClient();

/**
* TODO(developer): Uncomment the following line before running the sample.
*/
// const path = 'Local file to analyze, e.g. ./my-file.mp4';

// Reads a local video file and converts it to base64
const file = fs.readFileSync(path);
const inputContent = file.toString('base64');

const request = {
inputContent: inputContent,
features: ['FACE_DETECTION'],
videoContext: {
faceDetectionConfig: {
// Must set includeBoundingBoxes to true to get facial attributes.
includeBoundingBoxes: true,
includeAttributes: true,
},
},
};
// Detects faces in a video
const [operation] = await video.annotateVideo(request);
const results = await operation.promise();
console.log('Waiting for operation to complete...');

// Gets annotations for video
const faceAnnotations =
results[0].annotationResults[0].faceDetectionAnnotations;

for (const {tracks} of faceAnnotations) {
console.log('Face detected:');
for (const {segment, timestampedObjects} of tracks) {
if (segment.startTimeOffset.seconds === undefined) {
segment.startTimeOffset.seconds = 0;
}
if (segment.startTimeOffset.nanos === undefined) {
segment.startTimeOffset.nanos = 0;
}
if (segment.endTimeOffset.seconds === undefined) {
segment.endTimeOffset.seconds = 0;
}
if (segment.endTimeOffset.nanos === undefined) {
segment.endTimeOffset.nanos = 0;
}
console.log(
`\tStart: ${segment.startTimeOffset.seconds}` +
`.${(segment.startTimeOffset.nanos / 1e6).toFixed(0)}s`
);
console.log(
`\tEnd: ${segment.endTimeOffset.seconds}.` +
`${(segment.endTimeOffset.nanos / 1e6).toFixed(0)}s`
);

// Each segment includes timestamped objects that
// include characteristics of the face detected.
const [firstTimestapedObject] = timestampedObjects;

for (const {name} of firstTimestapedObject.attributes) {
// Attributes include unique pieces of clothing, like glasses,
// poses, or hair color.
console.log(`\tAttribute: ${name}; `);
}
}
}
}
async function detectFacesGCS(gcsUri) {
//[START video_detect_faces_gcs_beta]
// Imports the Google Cloud Video Intelligence library
const Video = require('@google-cloud/video-intelligence').v1p3beta1;
// Creates a client
const video = new Video.VideoIntelligenceServiceClient();

/**
* TODO(developer): Uncomment the following line before running the sample.
*/
// const gcsUri = 'GCS URI of the video to analyze, e.g. gs://my-bucket/my-video.mp4';

const request = {
inputUri: gcsUri,
features: ['FACE_DETECTION'],
videoContext: {
faceDetectionConfig: {
// Must set includeBoundingBoxes to true to get facial attributes.
includeBoundingBoxes: true,
includeAttributes: true,
},
},
};
// Detects faces in a video
const [operation] = await video.annotateVideo(request);
const results = await operation.promise();
console.log('Waiting for operation to complete...');

// Gets annotations for video
const faceAnnotations =
results[0].annotationResults[0].faceDetectionAnnotations;

for (const {tracks} of faceAnnotations) {
console.log('Face detected:');

for (const {segment, timestampedObjects} of tracks) {
if (segment.startTimeOffset.seconds === undefined) {
segment.startTimeOffset.seconds = 0;
}
if (segment.startTimeOffset.nanos === undefined) {
segment.startTimeOffset.nanos = 0;
}
if (segment.endTimeOffset.seconds === undefined) {
segment.endTimeOffset.seconds = 0;
}
if (segment.endTimeOffset.nanos === undefined) {
segment.endTimeOffset.nanos = 0;
}
console.log(
`\tStart: ${segment.startTimeOffset.seconds}.` +
`${(segment.startTimeOffset.nanos / 1e6).toFixed(0)}s`
);
console.log(
`\tEnd: ${segment.endTimeOffset.seconds}.` +
`${(segment.endTimeOffset.nanos / 1e6).toFixed(0)}s`
);

// Each segment includes timestamped objects that
// include characteristics of the face detected.
const [firstTimestapedObject] = timestampedObjects;

for (const {name} of firstTimestapedObject.attributes) {
// Attributes include unique pieces of clothing, like glasses,
// poses, or hair color.
console.log(`\tAttribute: ${name}; `);
}
}
}
}

async function main() {
require(`yargs`)
.demand(1)
.command(
`video-person-gcs <gcsUri>`,
`Detects people in a video stored in Google Cloud Storage using the Cloud Video Intelligence API.`,
{},
opts => detectPersonGCS(opts.gcsUri)
)
.command(
`video-person <path>`,
`Detects people in a video stored in a local file using the Cloud Video Intelligence API.`,
{},
opts => detectPerson(opts.path)
)
.command(
`video-faces-gcs <gcsUri>`,
`Detects faces in a video stored in Google Cloud Storage using the Cloud Video Intelligence API.`,
{},
opts => detectFacesGCS(opts.gcsUri)
)
.command(
`video-faces <path>`,
`Detects faces in a video stored in a local file using the Cloud Video Intelligence API.`,
{},
opts => detectFaces(opts.path)
)
.example(`node $0 video-person ./resources/googlework_short.mp4`)
.example(
`node $0 video-person-gcs gs://cloud-samples-data/video/googlework_short.mp4`
)
.example(`node $0 video-faces ./resources/googlework_short.mp4`)
.example(
`node $0 video-faces-gcs gs://cloud-samples-data/video/googlework_short.mp4`
)
.wrap(120)
.recommendCommands()
.epilogue(
`For more information, see https://cloud.google.com/video-intelligence/docs`
)
.help()
.strict().argv;
}

main().catch(console.error);
Loading

0 comments on commit cff2f36

Please sign in to comment.