Official code for paper Meta Soft Label Generation for Noisy Labels accepted by ICPR 2020.
Illustration of the proposed MSLG algorithm
Requirements:
- torch
- torchvision
- scikit-learn
- matplotlib
Code can be run as follows:
python main.py -d dataset_name -n noise_type -r noise_ratio -s batch_size -a alpha -b beta -g gamma -s1 stage1 -s2 stage2 -k K -m metadata_num
where options for input arguments are as follows
- dataset_name: cifar10, clothing1M, food101N
- noise_type: feature-dependent, symmetric (valid only for cifar10 dataset for synthetic noise)
- noise_ratio: integer value between 0-100 representing noise percentage (valid only for cifar10 dataset for synthetic noise)
- batch_size: any integer value
- alpha: float alpha value
- beta: float beta value
- gamma: float gamma value
- stage1: integer epoch value for stage1
- stage2: integer epoch value for stage1
- K: integer K multiplier for label initialization
- metadata_num: number of meta-data
Any of the input parameters can be skipped to use the default value. For example, to run with default values for all parameters:
python main.py -d clothing1M
Baseline methods can be run as follows:
python baselines.py -d dataset_name -n noise_type -r noise_ratio -m model_name
where baseline model can be one of the followings:
- model_name: cross_entropy, symmetric_crossentropy, generalized_crossentropy, bootstrap_soft, forwardloss, joint_optimization, pencil, coteaching, mwnet, mlnt