Skip to content

Official code for the paper "Meta Soft Label Generation for Noisy Labels" accepted at ICPR 2020.

Notifications You must be signed in to change notification settings

gorkemalgan/MSLG_noisy_label

Repository files navigation

Meta Soft Label Generation for Noisy Labels, ICPR-2020

Official code for paper Meta Soft Label Generation for Noisy Labels accepted by ICPR 2020.

Illustration of the proposed MSLG algorithm

Requirements:

  • torch
  • torchvision
  • scikit-learn
  • matplotlib

Running Proposed Algorithm

Code can be run as follows:

python main.py -d dataset_name -n noise_type -r noise_ratio -s batch_size -a alpha -b beta -g gamma -s1 stage1 -s2 stage2 -k K -m metadata_num

where options for input arguments are as follows

  • dataset_name: cifar10, clothing1M, food101N
  • noise_type: feature-dependent, symmetric (valid only for cifar10 dataset for synthetic noise)
  • noise_ratio: integer value between 0-100 representing noise percentage (valid only for cifar10 dataset for synthetic noise)
  • batch_size: any integer value
  • alpha: float alpha value
  • beta: float beta value
  • gamma: float gamma value
  • stage1: integer epoch value for stage1
  • stage2: integer epoch value for stage1
  • K: integer K multiplier for label initialization
  • metadata_num: number of meta-data

Any of the input parameters can be skipped to use the default value. For example, to run with default values for all parameters:

python main.py -d clothing1M

Running Baseline Methods

Baseline methods can be run as follows:

python baselines.py -d dataset_name -n noise_type -r noise_ratio -m model_name 

where baseline model can be one of the followings:

  • model_name: cross_entropy, symmetric_crossentropy, generalized_crossentropy, bootstrap_soft, forwardloss, joint_optimization, pencil, coteaching, mwnet, mlnt

About

Official code for the paper "Meta Soft Label Generation for Noisy Labels" accepted at ICPR 2020.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages