A Streamlit component to display Genomic Visualization using Gosling.
An online demo is host at Streamlit Clound.
Checkout the code of the demo
pip install streamlit gosling streamlit-gosling
This library provides 2 functions to display gosling visualization :
from_gos
to display visualization from a gosling instances. Make sure you havegosling
installed viapip install gosling
.from_json
to display visualization from Golsing spec in the form Python dict.
import streamlit as st
import gosling as gos
import streamlit_gosling as st_gos
size = 500
# create visualization using gosling
@st.cache_data
def chart():
data = gos.matrix("https://server.gosling-lang.org/api/v1/tileset_info/?d=leung2015-hg38")
return gos.Track(data).mark_bar().encode(
x=gos.X("xs:G", axis="bottom"),
xe="xe:G",
y=gos.Y("ys:G", axis="left"),
ye="ye:G",
color=gos.Color("value:Q", range="hot", legend=True),
).properties(width=size, height=size).view()
# wrap gosling visualization as a streamlit component
st_gos.from_gos(
spec=chart(),
id='id',
height=size+ 100
)
import streamlit_gosling as st_gos
spec = {
"title": "Basic Marks: bar",
"subtitle": "Tutorial Examples",
"tracks": [
{
"layout": "linear",
"width": 800,
"height": 180,
"data": {
"url": "https://resgen.io/api/v1/tileset_info/?d=UvVPeLHuRDiYA3qwFlm7xQ",
"type": "multivec",
"row": "sample",
"column": "position",
"value": "peak",
"categories": ["sample 1"],
"binSize": 5
},
"mark": "bar",
"x": {"field": "start", "type": "genomic", "axis": "bottom"},
"xe": {"field": "end", "type": "genomic"},
"y": {"field": "peak", "type": "quantitative", "axis": "right"},
"size": {"value": 5}
}
]
}
st_gos.from_gos(
spec=spec,
id='gos_bar',
height= 200
)
from_gos(id: string,
spec: a gosling visualization object,
height: number,
exportButton: boolean,
eventType?: 'mouseOver' | 'click' | 'rangeSelect',
api?
)
from_json(id: string,
spec: a gosling JSON spec as python dicts
height: number,
exportButton: boolean,
eventType?: 'mouseOver' | 'click' | 'rangeSelect',
api?
)
-
id:
string
-
spec: a visualization object created using Gosling or a gosling JSON spec as python dicts
-
height:
number
-
exportButton:
boolean
, whether to include the export button in the gosling component -
eventType:
string
, one of 'mouseOver', 'click', and 'rangeSelect'. If specified, the event data of the specified mouse event will be returned by the streamlit-gosling component. -
api: Call an api function of the gosling visualization. Three types of api actions are currently supported.
{ action: "zoomTo", viewId: string, position: string, padding?: number, duration?: number }
{ action: "zoomToExtent", viewId: string, duration?: number}
{ action: "zoomToGene", viewId: string, gene: string, padding?: number, duration?: number }
example
import streamlit as st from streamlit_gosling as st_gos # user select a chromosome using streamlit select box chr = st.select('zoom to a chromosome', [str(i) for i in range(1, 20)]) # the visaulization will zoom to different chromosome based on users' selection above st_gos.from_gos( spec=/****/, id='id', height=350, api={'action': 'zoomTo','viewId': 'track-1', 'position': f'chr{chr}'} )
Make sure _RELEASE = False
in streamlit_gosling/init.py
- JS side
cd streamlit_gosling/frontend
npm install
- Python side
conda create -n streamlit-gosling python=3.9
conda activate streamlit-gosling
pip install -e .
You need to run both the JS side and the Python side for development mode.
- JS side
cd frontend
npm run start
- Python side
streamlit run streamlit_gosling/__init__.py
-
set
_RELEASE = True
in init.py -
check the version number in setup.py
-
run
. publish-script.sh
-
answer
yes
for uploading to test.pypi for testing.twine
will prompt you for a username and password. For the username, use__token__
. For the password, use API token. -
download and test
pip install --index-url https://test.pypi.org/simple/ --no-deps streamlit-gosling