-
Notifications
You must be signed in to change notification settings - Fork 2.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Use HTTP Livestreaming for audio/video streaming out (#8906)
* HTTP live streaming * type check * fix code * Fix code * add code * Video demo * Fix tests * Update notebook * Add guide * Fix demo * Allow downloading * revert * Fix download filename * lint * notebooks * fix video demo * Fix config * Fix audio repeated play bug * Improve guide * fix audio? * Use cantina * Code * type check * add code * Use runtimeerror * Add code
- Loading branch information
1 parent
574f507
commit 51b7a8b
Showing
36 changed files
with
648 additions
and
115 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -2,4 +2,5 @@ numpy | |
matplotlib | ||
bokeh | ||
plotly | ||
altair | ||
altair | ||
opencv-python |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1 @@ | ||
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: outbreak_forecast\n", "### Generate a plot based on 5 inputs.\n", " "]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio numpy matplotlib bokeh plotly altair"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import altair\n", "\n", "import gradio as gr\n", "from math import sqrt\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import plotly.express as px\n", "import pandas as pd\n", "\n", "def outbreak(plot_type, r, month, countries, social_distancing):\n", " months = [\"January\", \"February\", \"March\", \"April\", \"May\"]\n", " m = months.index(month)\n", " start_day = 30 * m\n", " final_day = 30 * (m + 1)\n", " x = np.arange(start_day, final_day + 1)\n", " pop_count = {\"USA\": 350, \"Canada\": 40, \"Mexico\": 300, \"UK\": 120}\n", " if social_distancing:\n", " r = sqrt(r)\n", " df = pd.DataFrame({\"day\": x})\n", " for country in countries:\n", " df[country] = x ** (r) * (pop_count[country] + 1)\n", "\n", " if plot_type == \"Matplotlib\":\n", " fig = plt.figure()\n", " plt.plot(df[\"day\"], df[countries].to_numpy())\n", " plt.title(\"Outbreak in \" + month)\n", " plt.ylabel(\"Cases\")\n", " plt.xlabel(\"Days since Day 0\")\n", " plt.legend(countries)\n", " return fig\n", " elif plot_type == \"Plotly\":\n", " fig = px.line(df, x=\"day\", y=countries)\n", " fig.update_layout(\n", " title=\"Outbreak in \" + month,\n", " xaxis_title=\"Cases\",\n", " yaxis_title=\"Days Since Day 0\",\n", " )\n", " return fig\n", " elif plot_type == \"Altair\":\n", " df = df.melt(id_vars=\"day\").rename(columns={\"variable\": \"country\"})\n", " fig = altair.Chart(df).mark_line().encode(x=\"day\", y=\"value\", color=\"country\")\n", " return fig\n", " else:\n", " raise ValueError(\"A plot type must be selected\")\n", "\n", "inputs = [\n", " gr.Dropdown([\"Matplotlib\", \"Plotly\", \"Altair\"], label=\"Plot Type\"),\n", " gr.Slider(1, 4, 3.2, label=\"R\"),\n", " gr.Dropdown([\"January\", \"February\", \"March\", \"April\", \"May\"], label=\"Month\"),\n", " gr.CheckboxGroup(\n", " [\"USA\", \"Canada\", \"Mexico\", \"UK\"], label=\"Countries\", value=[\"USA\", \"Canada\"]\n", " ),\n", " gr.Checkbox(label=\"Social Distancing?\"),\n", "]\n", "outputs = gr.Plot()\n", "\n", "demo = gr.Interface(\n", " fn=outbreak,\n", " inputs=inputs,\n", " outputs=outputs,\n", " examples=[\n", " [\"Matplotlib\", 2, \"March\", [\"Mexico\", \"UK\"], True],\n", " [\"Altair\", 2, \"March\", [\"Mexico\", \"Canada\"], True],\n", " [\"Plotly\", 3.6, \"February\", [\"Canada\", \"Mexico\", \"UK\"], False],\n", " ],\n", " cache_examples=True,\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} | ||
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: outbreak_forecast\n", "### Generate a plot based on 5 inputs.\n", " "]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio numpy matplotlib bokeh plotly altair opencv-python"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import altair\n", "\n", "import gradio as gr\n", "from math import sqrt\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import plotly.express as px\n", "import pandas as pd\n", "\n", "def outbreak(plot_type, r, month, countries, social_distancing):\n", " months = [\"January\", \"February\", \"March\", \"April\", \"May\"]\n", " m = months.index(month)\n", " start_day = 30 * m\n", " final_day = 30 * (m + 1)\n", " x = np.arange(start_day, final_day + 1)\n", " pop_count = {\"USA\": 350, \"Canada\": 40, \"Mexico\": 300, \"UK\": 120}\n", " if social_distancing:\n", " r = sqrt(r)\n", " df = pd.DataFrame({\"day\": x})\n", " for country in countries:\n", " df[country] = x ** (r) * (pop_count[country] + 1)\n", "\n", " if plot_type == \"Matplotlib\":\n", " fig = plt.figure()\n", " plt.plot(df[\"day\"], df[countries].to_numpy())\n", " plt.title(\"Outbreak in \" + month)\n", " plt.ylabel(\"Cases\")\n", " plt.xlabel(\"Days since Day 0\")\n", " plt.legend(countries)\n", " return fig\n", " elif plot_type == \"Plotly\":\n", " fig = px.line(df, x=\"day\", y=countries)\n", " fig.update_layout(\n", " title=\"Outbreak in \" + month,\n", " xaxis_title=\"Cases\",\n", " yaxis_title=\"Days Since Day 0\",\n", " )\n", " return fig\n", " elif plot_type == \"Altair\":\n", " df = df.melt(id_vars=\"day\").rename(columns={\"variable\": \"country\"})\n", " fig = altair.Chart(df).mark_line().encode(x=\"day\", y=\"value\", color=\"country\")\n", " return fig\n", " else:\n", " raise ValueError(\"A plot type must be selected\")\n", "\n", "inputs = [\n", " gr.Dropdown([\"Matplotlib\", \"Plotly\", \"Altair\"], label=\"Plot Type\"),\n", " gr.Slider(1, 4, 3.2, label=\"R\"),\n", " gr.Dropdown([\"January\", \"February\", \"March\", \"April\", \"May\"], label=\"Month\"),\n", " gr.CheckboxGroup(\n", " [\"USA\", \"Canada\", \"Mexico\", \"UK\"], label=\"Countries\", value=[\"USA\", \"Canada\"]\n", " ),\n", " gr.Checkbox(label=\"Social Distancing?\"),\n", "]\n", "outputs = gr.Plot()\n", "\n", "demo = gr.Interface(\n", " fn=outbreak,\n", " inputs=inputs,\n", " outputs=outputs,\n", " examples=[\n", " [\"Matplotlib\", 2, \"March\", [\"Mexico\", \"UK\"], True],\n", " [\"Altair\", 2, \"March\", [\"Mexico\", \"Canada\"], True],\n", " [\"Plotly\", 3.6, \"February\", [\"Canada\", \"Mexico\", \"UK\"], False],\n", " ],\n", " cache_examples=True,\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1 @@ | ||
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: stream_audio_out"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "os.mkdir('audio')\n", "!wget -q -O audio/cantina.wav https://github.com/gradio-app/gradio/raw/main/demo/stream_audio_out/audio/cantina.wav"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from pydub import AudioSegment\n", "from time import sleep\n", "\n", "with gr.Blocks() as demo:\n", " input_audio = gr.Audio(label=\"Input Audio\", type=\"filepath\", format=\"mp3\")\n", " with gr.Row():\n", " with gr.Column():\n", " stream_as_file_btn = gr.Button(\"Stream as File\")\n", " format = gr.Radio([\"wav\", \"mp3\"], value=\"wav\", label=\"Format\")\n", " stream_as_file_output = gr.Audio(streaming=True)\n", "\n", " def stream_file(audio_file, format):\n", " audio = AudioSegment.from_file(audio_file)\n", " i = 0\n", " chunk_size = 1000\n", " while chunk_size * i < len(audio):\n", " chunk = audio[chunk_size * i : chunk_size * (i + 1)]\n", " i += 1\n", " if chunk:\n", " file = f\"/tmp/{i}.{format}\"\n", " chunk.export(file, format=format)\n", " yield file\n", " sleep(0.5)\n", "\n", " stream_as_file_btn.click(\n", " stream_file, [input_audio, format], stream_as_file_output\n", " )\n", "\n", " gr.Examples(\n", " [[\"audio/cantina.wav\", \"wav\"], [\"audio/cantina.wav\", \"mp3\"]],\n", " [input_audio, format],\n", " fn=stream_file,\n", " outputs=stream_as_file_output,\n", " )\n", "\n", " with gr.Column():\n", " stream_as_bytes_btn = gr.Button(\"Stream as Bytes\")\n", " stream_as_bytes_output = gr.Audio(streaming=True)\n", "\n", " def stream_bytes(audio_file):\n", " chunk_size = 20_000\n", " with open(audio_file, \"rb\") as f:\n", " while True:\n", " chunk = f.read(chunk_size)\n", " if chunk:\n", " yield chunk\n", " sleep(1)\n", " else:\n", " break\n", " stream_as_bytes_btn.click(stream_bytes, input_audio, stream_as_bytes_output)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} | ||
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: stream_audio_out"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "os.mkdir('audio')\n", "!wget -q -O audio/cantina.wav https://github.com/gradio-app/gradio/raw/main/demo/stream_audio_out/audio/cantina.wav"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from pydub import AudioSegment\n", "from time import sleep\n", "import os\n", "\n", "with gr.Blocks() as demo:\n", " input_audio = gr.Audio(label=\"Input Audio\", type=\"filepath\", format=\"mp3\")\n", " with gr.Row():\n", " with gr.Column():\n", " stream_as_file_btn = gr.Button(\"Stream as File\")\n", " format = gr.Radio([\"wav\", \"mp3\"], value=\"wav\", label=\"Format\")\n", " stream_as_file_output = gr.Audio(streaming=True, elem_id=\"stream_as_file_output\", autoplay=True)\n", "\n", " def stream_file(audio_file, format):\n", " audio = AudioSegment.from_file(audio_file)\n", " i = 0\n", " chunk_size = 1000\n", " while chunk_size * i < len(audio):\n", " chunk = audio[chunk_size * i : chunk_size * (i + 1)]\n", " i += 1\n", " if chunk:\n", " file = f\"/tmp/{i}.{format}\"\n", " chunk.export(file, format=format)\n", " yield file\n", " sleep(0.5)\n", "\n", " stream_as_file_btn.click(\n", " stream_file, [input_audio, format], stream_as_file_output\n", " )\n", "\n", " gr.Examples(\n", " [[os.path.join(os.path.abspath(''), \"audio/cantina.wav\"), \"wav\"],\n", " [os.path.join(os.path.abspath(''), \"audio/cantina.wav\"), \"mp3\"]],\n", " [input_audio, format],\n", " fn=stream_file,\n", " outputs=stream_as_file_output,\n", " cache_examples=False,\n", " )\n", "\n", " with gr.Column():\n", " stream_as_bytes_btn = gr.Button(\"Stream as Bytes\")\n", " stream_as_bytes_output = gr.Audio(streaming=True, elem_id=\"stream_as_bytes_output\", autoplay=True)\n", "\n", " def stream_bytes(audio_file):\n", " chunk_size = 20_000\n", " with open(audio_file, \"rb\") as f:\n", " while True:\n", " chunk = f.read(chunk_size)\n", " if chunk:\n", " yield chunk\n", " sleep(1)\n", " else:\n", " break\n", " stream_as_bytes_btn.click(stream_bytes, input_audio, stream_as_bytes_output)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: stream_video_out"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio opencv-python"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "os.mkdir('video')\n", "!wget -q -O video/compliment_bot_screen_recording_3x.mp4 https://github.com/gradio-app/gradio/raw/main/demo/stream_video_out/video/compliment_bot_screen_recording_3x.mp4"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import cv2\n", "import os\n", "from pathlib import Path\n", "import atexit\n", "\n", "current_dir = Path(__file__).resolve().parent\n", "\n", "\n", "def delete_files():\n", " for p in Path(current_dir).glob(\"*.ts\"):\n", " p.unlink()\n", " for p in Path(current_dir).glob(\"*.mp4\"):\n", " p.unlink()\n", "\n", "atexit.register(delete_files)\n", "\n", "\n", "def process_video(input_video, stream_as_mp4):\n", " cap = cv2.VideoCapture(input_video)\n", "\n", " video_codec = cv2.VideoWriter_fourcc(*\"mp4v\") if stream_as_mp4 else cv2.VideoWriter_fourcc(*\"x264\") # type: ignore\n", " fps = int(cap.get(cv2.CAP_PROP_FPS))\n", " width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))\n", " height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))\n", "\n", " iterating, frame = cap.read()\n", "\n", " n_frames = 0\n", " n_chunks = 0\n", " name = str(current_dir / f\"output_{n_chunks}{'.mp4' if stream_as_mp4 else '.ts'}\")\n", " segment_file = cv2.VideoWriter(name, video_codec, fps, (width, height)) # type: ignore\n", "\n", " while iterating:\n", "\n", " # flip frame vertically\n", " frame = cv2.flip(frame, 0)\n", " display_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n", " segment_file.write(display_frame)\n", " n_frames += 1\n", " if n_frames == 3 * fps:\n", " n_chunks += 1\n", " segment_file.release()\n", " n_frames = 0\n", " yield name\n", " name = str(current_dir / f\"output_{n_chunks}{'.mp4' if stream_as_mp4 else '.ts'}\")\n", " segment_file = cv2.VideoWriter(name, video_codec, fps, (width, height)) # type: ignore\n", "\n", " iterating, frame = cap.read()\n", "\n", " segment_file.release()\n", " yield name\n", "\n", "with gr.Blocks() as demo:\n", " gr.Markdown(\"# Video Streaming Out \ud83d\udcf9\")\n", " with gr.Row():\n", " with gr.Column():\n", " input_video = gr.Video(label=\"input\")\n", " checkbox = gr.Checkbox(label=\"Stream as MP4 file?\", value=False)\n", " with gr.Column():\n", " processed_frames = gr.Video(label=\"stream\", streaming=True, autoplay=True, elem_id=\"stream_video_output\")\n", " with gr.Row():\n", " process_video_btn = gr.Button(\"process video\")\n", "\n", " process_video_btn.click(process_video, [input_video, checkbox], [processed_frames])\n", "\n", " gr.Examples(\n", " [[os.path.join(os.path.abspath(''), \"video/compliment_bot_screen_recording_3x.mp4\"), False],\n", " [os.path.join(os.path.abspath(''), \"video/compliment_bot_screen_recording_3x.mp4\"), True]],\n", " [input_video, checkbox],\n", " fn=process_video,\n", " outputs=processed_frames,\n", " cache_examples=False,\n", " )\n", "\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} |
Oops, something went wrong.