-
Notifications
You must be signed in to change notification settings - Fork 2.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Fix: Some typos in streaming guides (#9675)
* Fix guides * Add import statement * Update guides/07_streaming/02_object-detection-from-webcam-with-webrtc.md Co-authored-by: Abubakar Abid <abubakar@huggingface.co> --------- Co-authored-by: Abubakar Abid <abubakar@huggingface.co>
- Loading branch information
1 parent
f422048
commit 60b6603
Showing
6 changed files
with
18 additions
and
4 deletions.
There are no files selected for viewing
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1 @@ | ||
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: rt-detr-object-detection"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio safetensors==0.4.3 opencv-python torch transformers>=4.43.0 Pillow "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/rt-detr-object-detection/draw_boxes.py"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import spaces\n", "import gradio as gr\n", "import cv2\n", "from PIL import Image\n", "import torch\n", "import time\n", "import numpy as np\n", "import uuid\n", "\n", "from transformers import RTDetrForObjectDetection, RTDetrImageProcessor # type: ignore\n", "\n", "from draw_boxes import draw_bounding_boxes\n", "\n", "image_processor = RTDetrImageProcessor.from_pretrained(\"PekingU/rtdetr_r50vd\")\n", "model = RTDetrForObjectDetection.from_pretrained(\"PekingU/rtdetr_r50vd\").to(\"cuda\")\n", "\n", "\n", "SUBSAMPLE = 2\n", "\n", "\n", "@spaces.GPU\n", "def stream_object_detection(video, conf_threshold):\n", " cap = cv2.VideoCapture(video)\n", "\n", " video_codec = cv2.VideoWriter_fourcc(*\"mp4v\") # type: ignore\n", " fps = int(cap.get(cv2.CAP_PROP_FPS))\n", "\n", " desired_fps = fps // SUBSAMPLE\n", " width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) // 2\n", " height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) // 2\n", "\n", " iterating, frame = cap.read()\n", "\n", " n_frames = 0\n", "\n", " name = f\"output_{uuid.uuid4()}.mp4\"\n", " segment_file = cv2.VideoWriter(name, video_codec, desired_fps, (width, height)) # type: ignore\n", " batch = []\n", "\n", " while iterating:\n", " frame = cv2.resize(frame, (0, 0), fx=0.5, fy=0.5)\n", " frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n", " if n_frames % SUBSAMPLE == 0:\n", " batch.append(frame)\n", " if len(batch) == 2 * desired_fps:\n", " inputs = image_processor(images=batch, return_tensors=\"pt\").to(\"cuda\")\n", "\n", " print(f\"starting batch of size {len(batch)}\")\n", " start = time.time()\n", " with torch.no_grad():\n", " outputs = model(**inputs)\n", " end = time.time()\n", " print(\"time taken for inference\", end - start)\n", "\n", " start = time.time()\n", " boxes = image_processor.post_process_object_detection(\n", " outputs,\n", " target_sizes=torch.tensor([(height, width)] * len(batch)),\n", " threshold=conf_threshold,\n", " )\n", "\n", " for _, (array, box) in enumerate(zip(batch, boxes)):\n", " pil_image = draw_bounding_boxes(\n", " Image.fromarray(array), box, model, conf_threshold\n", " )\n", " frame = np.array(pil_image)\n", " # Convert RGB to BGR\n", " frame = frame[:, :, ::-1].copy()\n", " segment_file.write(frame)\n", "\n", " batch = []\n", " segment_file.release()\n", " yield name\n", " end = time.time()\n", " print(\"time taken for processing boxes\", end - start)\n", " name = f\"output_{uuid.uuid4()}.mp4\"\n", " segment_file = cv2.VideoWriter(\n", " name, video_codec, desired_fps, (width, height)\n", " ) # type: ignore\n", "\n", " iterating, frame = cap.read()\n", " n_frames += 1\n", "\n", "\n", "with gr.Blocks() as demo:\n", " gr.HTML(\n", " \"\"\"\n", " <h1 style='text-align: center'>\n", " Video Object Detection with <a href='https://huggingface.co/PekingU/rtdetr_r101vd_coco_o365' target='_blank'>RT-DETR</a>\n", " </h1>\n", " \"\"\"\n", " )\n", " with gr.Row():\n", " with gr.Column():\n", " video = gr.Video(label=\"Video Source\")\n", " conf_threshold = gr.Slider(\n", " label=\"Confidence Threshold\",\n", " minimum=0.0,\n", " maximum=1.0,\n", " step=0.05,\n", " value=0.30,\n", " )\n", " with gr.Column():\n", " output_video = gr.Video(\n", " label=\"Processed Video\", streaming=True, autoplay=True\n", " )\n", "\n", " video.upload(\n", " fn=stream_object_detection,\n", " inputs=[video, conf_threshold],\n", " outputs=[output_video],\n", " )\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} | ||
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: rt-detr-object-detection"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio safetensors==0.4.3 opencv-python torch transformers>=4.43.0 Pillow "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/rt-detr-object-detection/draw_boxes.py"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import spaces\n", "import gradio as gr\n", "import cv2\n", "from PIL import Image\n", "import torch\n", "import time\n", "import numpy as np\n", "import uuid\n", "\n", "from transformers import RTDetrForObjectDetection, RTDetrImageProcessor # type: ignore\n", "\n", "from draw_boxes import draw_bounding_boxes\n", "\n", "image_processor = RTDetrImageProcessor.from_pretrained(\"PekingU/rtdetr_r50vd\")\n", "model = RTDetrForObjectDetection.from_pretrained(\"PekingU/rtdetr_r50vd\").to(\"cuda\")\n", "\n", "\n", "SUBSAMPLE = 2\n", "\n", "\n", "@spaces.GPU\n", "def stream_object_detection(video, conf_threshold):\n", " cap = cv2.VideoCapture(video)\n", "\n", " video_codec = cv2.VideoWriter_fourcc(*\"mp4v\") # type: ignore\n", " fps = int(cap.get(cv2.CAP_PROP_FPS))\n", "\n", " desired_fps = fps // SUBSAMPLE\n", " width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) // 2\n", " height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) // 2\n", "\n", " iterating, frame = cap.read()\n", "\n", " n_frames = 0\n", "\n", " name = f\"output_{uuid.uuid4()}.mp4\"\n", " segment_file = cv2.VideoWriter(name, video_codec, desired_fps, (width, height)) # type: ignore\n", " batch = []\n", "\n", " while iterating:\n", " frame = cv2.resize(frame, (0, 0), fx=0.5, fy=0.5)\n", " frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n", " if n_frames % SUBSAMPLE == 0:\n", " batch.append(frame)\n", " if len(batch) == 2 * desired_fps:\n", " inputs = image_processor(images=batch, return_tensors=\"pt\").to(\"cuda\")\n", "\n", " print(f\"starting batch of size {len(batch)}\")\n", " start = time.time()\n", " with torch.no_grad():\n", " outputs = model(**inputs)\n", " end = time.time()\n", " print(\"time taken for inference\", end - start)\n", "\n", " start = time.time()\n", " boxes = image_processor.post_process_object_detection(\n", " outputs,\n", " target_sizes=torch.tensor([(height, width)] * len(batch)),\n", " threshold=conf_threshold,\n", " )\n", "\n", " for _, (array, box) in enumerate(zip(batch, boxes)):\n", " pil_image = draw_bounding_boxes(\n", " Image.fromarray(array), box, model, conf_threshold\n", " )\n", " frame = np.array(pil_image)\n", " # Convert RGB to BGR\n", " frame = frame[:, :, ::-1].copy()\n", " segment_file.write(frame)\n", "\n", " batch = []\n", " segment_file.release()\n", " yield name\n", " end = time.time()\n", " print(\"time taken for processing boxes\", end - start)\n", " name = f\"output_{uuid.uuid4()}.mp4\"\n", " segment_file = cv2.VideoWriter(\n", " name, video_codec, desired_fps, (width, height)\n", " ) # type: ignore\n", "\n", " iterating, frame = cap.read()\n", " n_frames += 1\n", "\n", "\n", "with gr.Blocks() as demo:\n", " gr.HTML(\n", " \"\"\"\n", " <h1 style='text-align: center'>\n", " Video Object Detection with <a href='https://huggingface.co/PekingU/rtdetr_r101vd_coco_o365' target='_blank'>RT-DETR</a>\n", " </h1>\n", " \"\"\"\n", " )\n", " with gr.Row():\n", " with gr.Column():\n", " video = gr.Video(label=\"Video Source\")\n", " conf_threshold = gr.Slider(\n", " label=\"Confidence Threshold\",\n", " minimum=0.0,\n", " maximum=1.0,\n", " step=0.05,\n", " value=0.30,\n", " )\n", " with gr.Column():\n", " output_video = gr.Video(\n", " label=\"Processed Video\", streaming=True, autoplay=True\n", " )\n", "\n", " video.upload(\n", " fn=stream_object_detection,\n", " inputs=[video, conf_threshold],\n", " outputs=[output_video],\n", " )\n", "\n", " gr.Examples(\n", " examples=[\"3285790-hd_1920_1080_30fps.mp4\"],\n", " inputs=[video],\n", " )\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters