-
Notifications
You must be signed in to change notification settings - Fork 2.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Use HTTP Livestreaming for audio/video streaming out #8906
Merged
Merged
Changes from all commits
Commits
Show all changes
30 commits
Select commit
Hold shift + click to select a range
730b8dd
HTTP live streaming
freddyaboulton 338aaf4
merge dev
freddyaboulton 5d89694
type check
freddyaboulton 6c3aa0e
fix code
freddyaboulton 6723e11
Fix code
freddyaboulton 98d4809
add code
freddyaboulton 0c6e86f
Video demo
freddyaboulton abdf492
Fix tests
freddyaboulton 0127e82
Update notebook
freddyaboulton dbe2910
Add guide
freddyaboulton ea80a8e
Fix demo
freddyaboulton a4b91d3
Allow downloading
freddyaboulton a815811
revert
freddyaboulton dc46c89
Fix download filename
freddyaboulton b647d5d
merge 5.0
freddyaboulton de35d0c
lint
freddyaboulton e97a34c
notebooks
freddyaboulton a385074
fix video demo
freddyaboulton 163199f
Merge branch '5.0-dev' into http-livestreaming
freddyaboulton 3f46dec
Fix config
freddyaboulton 6510ada
merge main
freddyaboulton 78d681c
Fix audio repeated play bug
freddyaboulton f9ab7ad
Improve guide
freddyaboulton 84a4158
fix audio?
freddyaboulton 3dbfeb2
Use cantina
freddyaboulton 4d437e9
Code
freddyaboulton fe21ce8
type check
freddyaboulton 57a5720
add code
freddyaboulton cabc418
Use runtimeerror
freddyaboulton bed454c
Add code
freddyaboulton File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -2,4 +2,5 @@ numpy | |
matplotlib | ||
bokeh | ||
plotly | ||
altair | ||
altair | ||
opencv-python | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. accident? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. The workflow file runs from main so I can't actually add a step to install open-cv until after merge. Will fix once 5.0 is released. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1 @@ | ||
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: outbreak_forecast\n", "### Generate a plot based on 5 inputs.\n", " "]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio numpy matplotlib bokeh plotly altair"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import altair\n", "\n", "import gradio as gr\n", "from math import sqrt\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import plotly.express as px\n", "import pandas as pd\n", "\n", "def outbreak(plot_type, r, month, countries, social_distancing):\n", " months = [\"January\", \"February\", \"March\", \"April\", \"May\"]\n", " m = months.index(month)\n", " start_day = 30 * m\n", " final_day = 30 * (m + 1)\n", " x = np.arange(start_day, final_day + 1)\n", " pop_count = {\"USA\": 350, \"Canada\": 40, \"Mexico\": 300, \"UK\": 120}\n", " if social_distancing:\n", " r = sqrt(r)\n", " df = pd.DataFrame({\"day\": x})\n", " for country in countries:\n", " df[country] = x ** (r) * (pop_count[country] + 1)\n", "\n", " if plot_type == \"Matplotlib\":\n", " fig = plt.figure()\n", " plt.plot(df[\"day\"], df[countries].to_numpy())\n", " plt.title(\"Outbreak in \" + month)\n", " plt.ylabel(\"Cases\")\n", " plt.xlabel(\"Days since Day 0\")\n", " plt.legend(countries)\n", " return fig\n", " elif plot_type == \"Plotly\":\n", " fig = px.line(df, x=\"day\", y=countries)\n", " fig.update_layout(\n", " title=\"Outbreak in \" + month,\n", " xaxis_title=\"Cases\",\n", " yaxis_title=\"Days Since Day 0\",\n", " )\n", " return fig\n", " elif plot_type == \"Altair\":\n", " df = df.melt(id_vars=\"day\").rename(columns={\"variable\": \"country\"})\n", " fig = altair.Chart(df).mark_line().encode(x=\"day\", y=\"value\", color=\"country\")\n", " return fig\n", " else:\n", " raise ValueError(\"A plot type must be selected\")\n", "\n", "inputs = [\n", " gr.Dropdown([\"Matplotlib\", \"Plotly\", \"Altair\"], label=\"Plot Type\"),\n", " gr.Slider(1, 4, 3.2, label=\"R\"),\n", " gr.Dropdown([\"January\", \"February\", \"March\", \"April\", \"May\"], label=\"Month\"),\n", " gr.CheckboxGroup(\n", " [\"USA\", \"Canada\", \"Mexico\", \"UK\"], label=\"Countries\", value=[\"USA\", \"Canada\"]\n", " ),\n", " gr.Checkbox(label=\"Social Distancing?\"),\n", "]\n", "outputs = gr.Plot()\n", "\n", "demo = gr.Interface(\n", " fn=outbreak,\n", " inputs=inputs,\n", " outputs=outputs,\n", " examples=[\n", " [\"Matplotlib\", 2, \"March\", [\"Mexico\", \"UK\"], True],\n", " [\"Altair\", 2, \"March\", [\"Mexico\", \"Canada\"], True],\n", " [\"Plotly\", 3.6, \"February\", [\"Canada\", \"Mexico\", \"UK\"], False],\n", " ],\n", " cache_examples=True,\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} | ||
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: outbreak_forecast\n", "### Generate a plot based on 5 inputs.\n", " "]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio numpy matplotlib bokeh plotly altair opencv-python"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import altair\n", "\n", "import gradio as gr\n", "from math import sqrt\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import plotly.express as px\n", "import pandas as pd\n", "\n", "def outbreak(plot_type, r, month, countries, social_distancing):\n", " months = [\"January\", \"February\", \"March\", \"April\", \"May\"]\n", " m = months.index(month)\n", " start_day = 30 * m\n", " final_day = 30 * (m + 1)\n", " x = np.arange(start_day, final_day + 1)\n", " pop_count = {\"USA\": 350, \"Canada\": 40, \"Mexico\": 300, \"UK\": 120}\n", " if social_distancing:\n", " r = sqrt(r)\n", " df = pd.DataFrame({\"day\": x})\n", " for country in countries:\n", " df[country] = x ** (r) * (pop_count[country] + 1)\n", "\n", " if plot_type == \"Matplotlib\":\n", " fig = plt.figure()\n", " plt.plot(df[\"day\"], df[countries].to_numpy())\n", " plt.title(\"Outbreak in \" + month)\n", " plt.ylabel(\"Cases\")\n", " plt.xlabel(\"Days since Day 0\")\n", " plt.legend(countries)\n", " return fig\n", " elif plot_type == \"Plotly\":\n", " fig = px.line(df, x=\"day\", y=countries)\n", " fig.update_layout(\n", " title=\"Outbreak in \" + month,\n", " xaxis_title=\"Cases\",\n", " yaxis_title=\"Days Since Day 0\",\n", " )\n", " return fig\n", " elif plot_type == \"Altair\":\n", " df = df.melt(id_vars=\"day\").rename(columns={\"variable\": \"country\"})\n", " fig = altair.Chart(df).mark_line().encode(x=\"day\", y=\"value\", color=\"country\")\n", " return fig\n", " else:\n", " raise ValueError(\"A plot type must be selected\")\n", "\n", "inputs = [\n", " gr.Dropdown([\"Matplotlib\", \"Plotly\", \"Altair\"], label=\"Plot Type\"),\n", " gr.Slider(1, 4, 3.2, label=\"R\"),\n", " gr.Dropdown([\"January\", \"February\", \"March\", \"April\", \"May\"], label=\"Month\"),\n", " gr.CheckboxGroup(\n", " [\"USA\", \"Canada\", \"Mexico\", \"UK\"], label=\"Countries\", value=[\"USA\", \"Canada\"]\n", " ),\n", " gr.Checkbox(label=\"Social Distancing?\"),\n", "]\n", "outputs = gr.Plot()\n", "\n", "demo = gr.Interface(\n", " fn=outbreak,\n", " inputs=inputs,\n", " outputs=outputs,\n", " examples=[\n", " [\"Matplotlib\", 2, \"March\", [\"Mexico\", \"UK\"], True],\n", " [\"Altair\", 2, \"March\", [\"Mexico\", \"Canada\"], True],\n", " [\"Plotly\", 3.6, \"February\", [\"Canada\", \"Mexico\", \"UK\"], False],\n", " ],\n", " cache_examples=True,\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1 @@ | ||
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: stream_audio_out"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "os.mkdir('audio')\n", "!wget -q -O audio/cantina.wav https://github.com/gradio-app/gradio/raw/main/demo/stream_audio_out/audio/cantina.wav"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from pydub import AudioSegment\n", "from time import sleep\n", "\n", "with gr.Blocks() as demo:\n", " input_audio = gr.Audio(label=\"Input Audio\", type=\"filepath\", format=\"mp3\")\n", " with gr.Row():\n", " with gr.Column():\n", " stream_as_file_btn = gr.Button(\"Stream as File\")\n", " format = gr.Radio([\"wav\", \"mp3\"], value=\"wav\", label=\"Format\")\n", " stream_as_file_output = gr.Audio(streaming=True)\n", "\n", " def stream_file(audio_file, format):\n", " audio = AudioSegment.from_file(audio_file)\n", " i = 0\n", " chunk_size = 1000\n", " while chunk_size * i < len(audio):\n", " chunk = audio[chunk_size * i : chunk_size * (i + 1)]\n", " i += 1\n", " if chunk:\n", " file = f\"/tmp/{i}.{format}\"\n", " chunk.export(file, format=format)\n", " yield file\n", " sleep(0.5)\n", "\n", " stream_as_file_btn.click(\n", " stream_file, [input_audio, format], stream_as_file_output\n", " )\n", "\n", " gr.Examples(\n", " [[\"audio/cantina.wav\", \"wav\"], [\"audio/cantina.wav\", \"mp3\"]],\n", " [input_audio, format],\n", " fn=stream_file,\n", " outputs=stream_as_file_output,\n", " )\n", "\n", " with gr.Column():\n", " stream_as_bytes_btn = gr.Button(\"Stream as Bytes\")\n", " stream_as_bytes_output = gr.Audio(streaming=True)\n", "\n", " def stream_bytes(audio_file):\n", " chunk_size = 20_000\n", " with open(audio_file, \"rb\") as f:\n", " while True:\n", " chunk = f.read(chunk_size)\n", " if chunk:\n", " yield chunk\n", " sleep(1)\n", " else:\n", " break\n", " stream_as_bytes_btn.click(stream_bytes, input_audio, stream_as_bytes_output)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} | ||
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: stream_audio_out"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "os.mkdir('audio')\n", "!wget -q -O audio/cantina.wav https://github.com/gradio-app/gradio/raw/main/demo/stream_audio_out/audio/cantina.wav"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from pydub import AudioSegment\n", "from time import sleep\n", "import os\n", "\n", "with gr.Blocks() as demo:\n", " input_audio = gr.Audio(label=\"Input Audio\", type=\"filepath\", format=\"mp3\")\n", " with gr.Row():\n", " with gr.Column():\n", " stream_as_file_btn = gr.Button(\"Stream as File\")\n", " format = gr.Radio([\"wav\", \"mp3\"], value=\"wav\", label=\"Format\")\n", " stream_as_file_output = gr.Audio(streaming=True, elem_id=\"stream_as_file_output\", autoplay=True)\n", "\n", " def stream_file(audio_file, format):\n", " audio = AudioSegment.from_file(audio_file)\n", " i = 0\n", " chunk_size = 1000\n", " while chunk_size * i < len(audio):\n", " chunk = audio[chunk_size * i : chunk_size * (i + 1)]\n", " i += 1\n", " if chunk:\n", " file = f\"/tmp/{i}.{format}\"\n", " chunk.export(file, format=format)\n", " yield file\n", " sleep(0.5)\n", "\n", " stream_as_file_btn.click(\n", " stream_file, [input_audio, format], stream_as_file_output\n", " )\n", "\n", " gr.Examples(\n", " [[os.path.join(os.path.abspath(''), \"audio/cantina.wav\"), \"wav\"],\n", " [os.path.join(os.path.abspath(''), \"audio/cantina.wav\"), \"mp3\"]],\n", " [input_audio, format],\n", " fn=stream_file,\n", " outputs=stream_as_file_output,\n", " cache_examples=False,\n", " )\n", "\n", " with gr.Column():\n", " stream_as_bytes_btn = gr.Button(\"Stream as Bytes\")\n", " stream_as_bytes_output = gr.Audio(streaming=True, elem_id=\"stream_as_bytes_output\", autoplay=True)\n", "\n", " def stream_bytes(audio_file):\n", " chunk_size = 20_000\n", " with open(audio_file, \"rb\") as f:\n", " while True:\n", " chunk = f.read(chunk_size)\n", " if chunk:\n", " yield chunk\n", " sleep(1)\n", " else:\n", " break\n", " stream_as_bytes_btn.click(stream_bytes, input_audio, stream_as_bytes_output)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: stream_video_out"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio opencv-python"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "os.mkdir('video')\n", "!wget -q -O video/compliment_bot_screen_recording_3x.mp4 https://github.com/gradio-app/gradio/raw/main/demo/stream_video_out/video/compliment_bot_screen_recording_3x.mp4"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import cv2\n", "import os\n", "from pathlib import Path\n", "import atexit\n", "\n", "current_dir = Path(__file__).resolve().parent\n", "\n", "\n", "def delete_files():\n", " for p in Path(current_dir).glob(\"*.ts\"):\n", " p.unlink()\n", " for p in Path(current_dir).glob(\"*.mp4\"):\n", " p.unlink()\n", "\n", "atexit.register(delete_files)\n", "\n", "\n", "def process_video(input_video, stream_as_mp4):\n", " cap = cv2.VideoCapture(input_video)\n", "\n", " video_codec = cv2.VideoWriter_fourcc(*\"mp4v\") if stream_as_mp4 else cv2.VideoWriter_fourcc(*\"x264\") # type: ignore\n", " fps = int(cap.get(cv2.CAP_PROP_FPS))\n", " width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))\n", " height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))\n", "\n", " iterating, frame = cap.read()\n", "\n", " n_frames = 0\n", " n_chunks = 0\n", " name = str(current_dir / f\"output_{n_chunks}{'.mp4' if stream_as_mp4 else '.ts'}\")\n", " segment_file = cv2.VideoWriter(name, video_codec, fps, (width, height)) # type: ignore\n", "\n", " while iterating:\n", "\n", " # flip frame vertically\n", " frame = cv2.flip(frame, 0)\n", " display_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n", " segment_file.write(display_frame)\n", " n_frames += 1\n", " if n_frames == 3 * fps:\n", " n_chunks += 1\n", " segment_file.release()\n", " n_frames = 0\n", " yield name\n", " name = str(current_dir / f\"output_{n_chunks}{'.mp4' if stream_as_mp4 else '.ts'}\")\n", " segment_file = cv2.VideoWriter(name, video_codec, fps, (width, height)) # type: ignore\n", "\n", " iterating, frame = cap.read()\n", "\n", " segment_file.release()\n", " yield name\n", "\n", "with gr.Blocks() as demo:\n", " gr.Markdown(\"# Video Streaming Out \ud83d\udcf9\")\n", " with gr.Row():\n", " with gr.Column():\n", " input_video = gr.Video(label=\"input\")\n", " checkbox = gr.Checkbox(label=\"Stream as MP4 file?\", value=False)\n", " with gr.Column():\n", " processed_frames = gr.Video(label=\"stream\", streaming=True, autoplay=True, elem_id=\"stream_video_output\")\n", " with gr.Row():\n", " process_video_btn = gr.Button(\"process video\")\n", "\n", " process_video_btn.click(process_video, [input_video, checkbox], [processed_frames])\n", "\n", " gr.Examples(\n", " [[os.path.join(os.path.abspath(''), \"video/compliment_bot_screen_recording_3x.mp4\"), False],\n", " [os.path.join(os.path.abspath(''), \"video/compliment_bot_screen_recording_3x.mp4\"), True]],\n", " [input_video, checkbox],\n", " fn=process_video,\n", " outputs=processed_frames,\n", " cache_examples=False,\n", " )\n", "\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This got deleted somewhere along the line