Skip to content
This repository has been archived by the owner on Jan 20, 2022. It is now read-only.

[Examples] Add TensorFlow examples - ResNet50 and BERT models #2530

Closed
wants to merge 8 commits into from
3 changes: 3 additions & 0 deletions Examples/tensorflow/BERT/.gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
/models/
/data/
/output/
60 changes: 60 additions & 0 deletions Examples/tensorflow/BERT/Makefile
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
# BERT sample for Tensorflow

ARCH_LIBDIR ?= /lib/$(shell $(CC) -dumpmachine)
SGX_SIGNER_KEY ?= ../../../Pal/src/host/Linux-SGX/signer/enclave-key.pem

ifeq ($(DEBUG),1)
GRAPHENE_LOG_LEVEL = debug
else
GRAPHENE_LOG_LEVEL = error
endif

.PHONY: all
all: python.manifest
ifeq ($(SGX),1)
all: python.manifest.sgx python.sig python.token
endif

BERT_DATASET = https://storage.googleapis.com/bert_models/2019_05_30/wwm_uncased_L-24_H-1024_A-16.zip
SQUAAD_DATASET = https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json
CHECKPOINTS = https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_8/bert_large_checkpoints.zip
BERT_INT8_MODEL = https://storage.googleapis.com/intel-optimized-tensorflow/models/r2.5-icx-b631821f/asymmetric_per_channel_bert_int8.pb

collateral:
apt install unzip
test -d models || git clone https://github.com/IntelAI/models.git
mkdir -p data
test -f data/wwm_uncased_L-24_H-1024_A-16.zip || wget $(BERT_DATASET) -P data/
test -d data/wwm_uncased_L-24_H-1024_A-16 || unzip data/wwm_uncased_L-24_H-1024_A-16.zip -d data
test -f data/wwm_uncased_L-24_H-1024_A-16/dev-v1.1.json || wget $(SQUAAD_DATASET) -P data/wwm_uncased_L-24_H-1024_A-16
test -f data/bert_large_checkpoints.zip || wget $(CHECKPOINTS) -P data/
test -d data/bert_large_checkpoints || unzip data/bert_large_checkpoints.zip -d data
test -f data/asymmetric_per_channel_bert_int8.pb || wget $(BERT_INT8_MODEL) -P data/

python.manifest: python.manifest.template collateral
graphene-manifest \
-Dlog_level=$(GRAPHENE_LOG_LEVEL) \
-Darch_libdir=$(ARCH_LIBDIR) \
-Dentrypoint=$(realpath $(shell sh -c "command -v python3")) \
-Dpythondistpath=$(PYTHONDISTPATH) \
$< >$@

python.manifest.sgx: python.manifest
@test -s $(SGX_SIGNER_KEY) || \
{ echo "SGX signer private key was not found, please specify SGX_SIGNER_KEY!"; exit 1; }
graphene-sgx-sign \
--key $(SGX_SIGNER_KEY) \
--manifest $< -output $@

python.sig: python.manifest.sgx

python.token: python.sig
graphene-sgx-get-token -output $@ -sig $<

.PHONY: clean
clean:
$(RM) *.manifest *.manifest.sgx *.token *.sig

.PHONY: distclean
distclean: clean
$(RM) -r models/ data/
64 changes: 64 additions & 0 deletions Examples/tensorflow/BERT/python.manifest.template
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
libos.entrypoint = "{{ entrypoint }}"
loader.preload = "file:{{ graphene.libos }}"

loader.log_level = "{{ log_level }}"

loader.insecure__use_cmdline_argv = true
loader.insecure__use_host_env = true
loader.insecure__disable_aslr = true

loader.env.LD_LIBRARY_PATH = "{{ python.stdlib }}/lib:/lib:{{ arch_libdir }}:/usr/lib:/usr/{{ arch_libdir }}"

loader.pal_internal_mem_size = "512M"

fs.mount.lib.type = "chroot"
fs.mount.lib.path = "/lib"
fs.mount.lib.uri = "file:{{ graphene.runtimedir() }}"

fs.mount.lib2.type = "chroot"
fs.mount.lib2.path = "{{ arch_libdir }}"
fs.mount.lib2.uri = "file:{{ arch_libdir }}"

fs.mount.usr.type = "chroot"
fs.mount.usr.path = "/usr"
fs.mount.usr.uri = "file:/usr"

fs.mount.pyhome.type = "chroot"
fs.mount.pyhome.path = "{{ python.stdlib }}"
fs.mount.pyhome.uri = "file:{{ python.stdlib }}"

fs.mount.pydisthome.type = "chroot"
fs.mount.pydisthome.path = "{{ python.distlib }}"
fs.mount.pydisthome.uri = "file:{{ python.distlib }}"

fs.mount.pydistpath.type = "chroot"
fs.mount.pydistpath.path = "{{ pythondistpath }}"
fs.mount.pydistpath.uri = "file:{{ pythondistpath }}"

fs.mount.tmp.type = "chroot"
fs.mount.tmp.path = "/tmp"
fs.mount.tmp.uri = "file:/tmp"

fs.mount.etc.type = "chroot"
fs.mount.etc.path = "/etc"
fs.mount.etc.uri = "file:/etc"

sgx.enclave_size = "32G"
sgx.thread_num = 256
sgx.preheat_enclave = true
sgx.nonpie_binary = true

sgx.trusted_files.runtime = "file:{{ graphene.runtimedir() }}/"
sgx.trusted_files.arch_libdir = "file:{{ arch_libdir }}/"
sgx.trusted_files.usr_arch_libdir = "file:/usr/{{ arch_libdir }}/"
sgx.trusted_files.python = "file:{{ entrypoint }}"
sgx.trusted_files.pyhome = "file:{{ python.stdlib }}"
sgx.trusted_files.pydisthome = "file:{{ python.distlib }}"
sgx.trusted_files.pydistpath = "file:{{ pythondistpath }}"

sgx.allowed_files.tmp = "file:/tmp/"
sgx.allowed_files.etc = "file:/etc/"
sgx.allowed_files.output = "file:output/"
sgx.allowed_files.scripts = "file:models/"
sgx.allowed_files.dataDir = "file:data/"
sgx.allowed_files.keras = "file:root/.keras/keras.json"
6 changes: 6 additions & 0 deletions Examples/tensorflow/BERT/root/.keras/keras.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
{
"floatx": "float32",
"epsilon": 1e-07,
"backend": "tensorflow",
"image_data_format": "channels_last"
}
113 changes: 113 additions & 0 deletions Examples/tensorflow/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,113 @@
## Inference on TensorFlow BERT and ResNet50 models
This directory contains steps and artifacts to run inference with TensorFlow BERT and ResNet50
sample workloads on Graphene. Specifically, both these examples use pre-trained models to run
inference.

### Bidirectional Encoder Representations from Transformers (BERT):
BERT is a method of pre-training language representations and then use that trained model for
downstream NLP tasks like 'question answering'. BERT is an unsupervised, deeply bidirectional system
for pre-training NLP.
In this BERT sample, we use **BERT-Large, Uncased (Whole Word Masking)** model and perform int8
inference. More details about BERT can be found at https://github.com/google-research/bert.

### Residual Network (ResNet):
ResNet50 is a convolutional neural network that is 50 layers deep.
In this ResNet50 (v1.5) sample, we use a pre-trained model and perform int8 inference.
More details about ResNet50 can be found at https://github.com/IntelAI/models/tree/icx-launch-public/benchmarks/image_recognition/tensorflow/resnet50v1_5.

## Pre-requisites
- Upgrade pip/pip3.
- Install TensorFlow using ``pip install intel-tensorflow-avx512==2.4.0``.

## Build BERT or ResNet50 samples
- To build BERT sample, do ``cd BERT``. To build ResNet50 sample, do ``cd ResNet50``.
- To clean the sample, do ``make clean``
- To clean and remove downloaded models and datasets, do ``make distclean``
- To build the non-SGX version, do ``make PYTHONDISTPATH=path_to_python_dist_packages/``
- To build the SGX version, do ``make PYTHONDISTPATH=path_to_python_dist_packages/ SGX=1``
- Typically, ``path_to_python_dist_packages`` is ``/usr/local/lib/python3.6/dist-packages``, but can
change based on python's installation directory.
- Keras settings are configured in the file ``root/.keras/keras.json``. It is configured to use
TensorFlow as backend.

**WARNING:** Building BERT sample downloads about 5GB of data.

## Run inference on BERT model
- To run int8 inference on ``graphene-sgx`` (SGX version):
```
OMP_NUM_THREADS=36 KMP_AFFINITY=granularity=fine,verbose,compact,1,0 taskset -c 0-35 graphene-sgx \
./python models/models/language_modeling/tensorflow/bert_large/inference/run_squad.py \
--init_checkpoint=data/bert_large_checkpoints/model.ckpt-3649 \
--vocab_file=data/wwm_uncased_L-24_H-1024_A-16/vocab.txt \
--bert_config_file=data/wwm_uncased_L-24_H-1024_A-16/bert_config.json \
--predict_file=data/wwm_uncased_L-24_H-1024_A-16/dev-v1.1.json \
--precision=int8 \
--output_dir=output/bert-squad-output \
--predict_batch_size=32 \
--experimental_gelu=True \
--optimized_softmax=True \
--input_graph=data/asymmetric_per_channel_bert_int8.pb \
--do_predict=True --mode=benchmark \
--inter_op_parallelism_threads=1 \
--intra_op_parallelism_threads=36
```
- To run int8 inference on ``graphene-direct`` (non-SGX version), replace ``graphene-sgx`` with
``graphene-direct`` in the above command.
- To run int8 inference on native baremetal (outside Graphene), replace ``graphene-sgx ./python`` with
``python3`` in the above command.

## Run inference on ResNet50 model
- To run inference on ``graphene-sgx`` (SGX version):
```
OMP_NUM_THREADS=36 KMP_AFFINITY=granularity=fine,verbose,compact,1,0 taskset -c 0-35 graphene-sgx \
./python models/models/image_recognition/tensorflow/resnet50v1_5/inference/eval_image_classifier_inference.py \
--input-graph=resnet50v1_5_int8_pretrained_model.pb \
--num-inter-threads=1 \
--num-intra-threads=36 \
--batch-size=32 \
--warmup-steps=50 \
--steps=500
```
- To run inference on ``graphene-direct`` (non-SGX version), replace ``graphene-sgx`` with
``graphene-direct`` in the above command.
- To run inference on native baremetal (outside Graphene), replace ``graphene-sgx ./python`` with
``python3`` in the above command.

## Notes on optimal performance
- Above commands are for a 36 core system. Please set the following options accordingly for optimal
performance:
- Assuming that X is the number of cores per socket, set `OMP_NUM_THREADS=X`,
`intra_op_parallelism_threads=X` for BERT and `num_intra_threads=X` for ResNet50.
- Specify the whole range of cores available on one of the sockets in `taskset`.
- If hyperthreading is enabled: use ``KMP_AFFINITY=granularity=fine,verbose,compact,1,0``
- If hyperthreading is disabled: use ``KMP_AFFINITY=granularity=fine,verbose,compact``
- Note that `OMP_NUM_THREADS` sets the maximum number of threads to
use for OpenMP parallel regions, and `KMP_AFFINITY` binds OpenMP threads
to physical processing units.
- The options `batch-size`, `warmup-steps` and `steps` can be varied for ResNet50 sample.
- To get the number of cores per socket, do ``lscpu | grep 'Core(s) per socket'``.

## Performance considerations
- Linux systems have CPU frequency scaling governor that helps the system to scale the CPU frequency
to achieve best performance or to save power based on the requirement.
To set the CPU frequency scaling governor to performance mode:

- ``for ((i=0; i<$(nproc); i++)); do echo 'performance' > /sys/devices/system/cpu/cpu$i/cpufreq/scaling_governor; done``

- Preheat manifest option pre-faults the enclave memory and moves the performance penalty to
graphene-sgx invocation (before the workload starts execution).
To use preheat option, add ``sgx.preheat_enclave = true`` to the manifest template.
- TCMalloc and mimalloc are memory allocator libraries from Google and Microsoft that can help
improve performance significantly based on the workloads. At any point, only one of these
allocators can be used.
- TCMalloc (Please update the binary location and name if different from default):
- Install tcmalloc: ``sudo apt-get install google-perftools``
- Add the following lines in the manifest template and rebuild the sample.
- ``loader.env.LD_PRELOAD = "/usr/lib/x86_64-linux-gnu/libtcmalloc.so.4"``
- ``sgx.trusted_files.libtcmalloc = "file:/usr/lib/x86_64-linux-gnu/libtcmalloc.so.4"``
- ``sgx.trusted_files.libunwind = "file:/usr/lib/x86_64-linux-gnu/libunwind.so.8"``
- mimalloc (Please update the binary location and name if different from default):
- Install mimalloc using the steps from https://github.com/microsoft/mimalloc
- Add the following lines in the manifest template and rebuild the sample.
- ``loader.env.LD_PRELOAD = "/usr/local/lib/mimalloc-1.7/libmimalloc.so.1.7"``
- ``sgx.trusted_files.libmimalloc = "file:/usr/local/lib/mimalloc-1.7/libmimalloc.so.1.7"``
2 changes: 2 additions & 0 deletions Examples/tensorflow/ResNet50/.gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
/models/
/resnet50v1_5_int8_pretrained_model.pb
49 changes: 49 additions & 0 deletions Examples/tensorflow/ResNet50/Makefile
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
# ResNet50 sample for Tensorflow

ARCH_LIBDIR ?= /lib/$(shell $(CC) -dumpmachine)
SGX_SIGNER_KEY ?= ../../../Pal/src/host/Linux-SGX/signer/enclave-key.pem

ifeq ($(DEBUG),1)
GRAPHENE_LOG_LEVEL = debug
else
GRAPHENE_LOG_LEVEL = error
endif

.PHONY: all collateral
all: python.manifest
ifeq ($(SGX),1)
all: python.manifest.sgx python.sig python.token
endif

collateral:
test -d models || git clone https://github.com/IntelAI/models.git
test -f resnet50v1_5_int8_pretrained_model.pb || wget https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_8/resnet50v1_5_int8_pretrained_model.pb

python.manifest: python.manifest.template collateral
graphene-manifest \
-Dlog_level=$(GRAPHENE_LOG_LEVEL) \
-Darch_libdir=$(ARCH_LIBDIR) \
-Dentrypoint=$(realpath $(shell sh -c "command -v python3")) \
-Dpythondistpath=$(PYTHONDISTPATH) \
$< >$@

python.manifest.sgx: python.manifest
@test -s $(SGX_SIGNER_KEY) || \
{ echo "SGX signer private key was not found, please specify SGX_SIGNER_KEY!"; exit 1; }
graphene-sgx-sign \
--key $(SGX_SIGNER_KEY) \
--manifest python.manifest \
--output $@

python.sig: python.manifest.sgx

python.token: python.sig
graphene-sgx-get-token -output $@ -sig $<

.PHONY: clean
clean:
$(RM) *.manifest *.manifest.sgx *.token *.sig

.PHONY: distclean
distclean: clean
$(RM) -r models/ resnet50v1_5_int8_pretrained_model.pb
68 changes: 68 additions & 0 deletions Examples/tensorflow/ResNet50/python.manifest.template
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
libos.entrypoint = "{{ entrypoint }}"
loader.preload = "file:{{ graphene.libos }}"

loader.log_level = "{{ log_level }}"

loader.insecure__use_cmdline_argv = true
loader.insecure__use_host_env = true
loader.insecure__disable_aslr = true

loader.env.LD_LIBRARY_PATH = "{{ python.stdlib }}/lib:/lib:{{ arch_libdir }}:/usr/lib:/usr/{{ arch_libdir }}"

loader.pal_internal_mem_size = "512M"

fs.mount.lib.type = "chroot"
fs.mount.lib.path = "/lib"
fs.mount.lib.uri = "file:{{ graphene.runtimedir() }}"

fs.mount.lib2.type = "chroot"
fs.mount.lib2.path = "{{ arch_libdir }}"
fs.mount.lib2.uri = "file:{{ arch_libdir }}"

fs.mount.usr.type = "chroot"
fs.mount.usr.path = "/usr"
fs.mount.usr.uri = "file:/usr"

fs.mount.bin.type = "chroot"
fs.mount.bin.path = "/bin"
fs.mount.bin.uri = "file:/bin"

fs.mount.pyhome.type = "chroot"
fs.mount.pyhome.path = "{{ python.stdlib }}"
fs.mount.pyhome.uri = "file:{{ python.stdlib }}"

fs.mount.pydisthome.type = "chroot"
fs.mount.pydisthome.path = "{{ python.distlib }}"
fs.mount.pydisthome.uri = "file:{{ python.distlib }}"

fs.mount.pydistpath.type = "chroot"
fs.mount.pydistpath.path = "{{ pythondistpath }}"
fs.mount.pydistpath.uri = "file:{{ pythondistpath }}"

fs.mount.tmp.type = "chroot"
fs.mount.tmp.path = "/tmp"
fs.mount.tmp.uri = "file:/tmp"

fs.mount.etc.type = "chroot"
fs.mount.etc.path = "/etc"
fs.mount.etc.uri = "file:/etc"

sgx.enclave_size = "32G"
sgx.thread_num = 300
sgx.preheat_enclave = true
sgx.nonpie_binary = true

sgx.trusted_files.runtime = "file:{{ graphene.runtimedir() }}/"
sgx.trusted_files.arch_libdir = "file:{{ arch_libdir }}/"
sgx.trusted_files.usr_arch_libdir = "file:/usr/{{ arch_libdir }}/"
sgx.trusted_files.model = "file:resnet50v1_5_int8_pretrained_model.pb"
sgx.trusted_files.python = "file:{{ entrypoint }}"
sgx.trusted_files.pyhome = "file:{{ python.stdlib }}"
sgx.trusted_files.pydisthome = "file:{{ python.distlib }}"
sgx.trusted_files.pydistpath = "file:{{ pythondistpath }}"

sgx.allowed_files.tmp = "file:/tmp/"
sgx.allowed_files.etc = "file:/etc/"
sgx.allowed_files.proc = "file:/proc/"
sgx.allowed_files.scripts = "file:models/"
sgx.allowed_files.keras = "file:root/.keras/keras.json"
6 changes: 6 additions & 0 deletions Examples/tensorflow/ResNet50/root/.keras/keras.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
{
"floatx": "float32",
"epsilon": 1e-07,
"backend": "tensorflow",
"image_data_format": "channels_last"
}