Note
The main branch is used to support model conversion of MMDetection>=3.0. If you want to convert model on older MMDetection, Please switch to branch:
- 2024.02: Support MMDetection>=3.0
This project aims to support End2End deployment of models in MMDetection with TensorRT.
Mask support is experiment.
Features:
- fp16
- int8(experiment)
- batched input
- dynamic input shape
- combination of different modules
- DeepStream
-
install MMDetection:
pip install openmim mim install mmdet==3.3.0
-
install torch2trt_dynamic:
git clone https://github.com/grimoire/torch2trt_dynamic.git torch2trt_dynamic cd torch2trt_dynamic pip install -e .
-
install amirstan_plugin:
-
Install tensorrt: TensorRT
-
clone repo and build plugin
git clone --depth=1 https://github.com/grimoire/amirstan_plugin.git cd amirstan_plugin git submodule update --init --progress --depth=1 mkdir build cd build cmake -DTENSORRT_DIR=${TENSORRT_DIR} .. make -j10
[!NOTE]
DON'T FORGET setting the environment variable(in
~/.bashrc
):export AMIRSTAN_LIBRARY_PATH=${amirstan_plugin_root}/build/lib
-
git clone https://github.com/grimoire/mmdetection-to-tensorrt.git
cd mmdetection-to-tensorrt
pip install -e .
Build docker image
sudo docker build -t mmdet2trt_docker:v1.0 docker/
Run (will show the help for the CLI entrypoint)
sudo docker run --gpus all -it --rm -v ${your_data_path}:${bind_path} mmdet2trt_docker:v1.0
Or if you want to open a terminal inside de container:
sudo docker run --gpus all -it --rm -v ${your_data_path}:${bind_path} --entrypoint bash mmdet2trt_docker:v1.0
Example conversion:
sudo docker run --gpus all -it --rm -v ${your_data_path}:${bind_path} mmdet2trt_docker:v1.0 ${bind_path}/config.py ${bind_path}/checkpoint.pth ${bind_path}/output.trt
Create a TensorRT model from mmdet model. detail can be found in getting_started.md
# conversion might take few minutes.
mmdet2trt ${CONFIG_PATH} ${CHECKPOINT_PATH} ${OUTPUT_PATH}
Run mmdet2trt -h for help on optional arguments.
shape_ranges=dict(
x=dict(
min=[1,3,320,320],
opt=[1,3,800,1344],
max=[1,3,1344,1344],
)
)
trt_model = mmdet2trt(cfg_path,
weight_path,
shape_ranges=shape_ranges,
fp16_mode=True)
# save converted model
torch.save(trt_model.state_dict(), save_model_path)
# save engine if you want to use it in c++ api
with open(save_engine_path, mode='wb') as f:
f.write(trt_model.state_dict()['engine'])
Note
The input of the engine is the tensor after preprocess.
The output of the engine is num_dets, bboxes, scores, class_ids
. if you enable the enable_mask
flag, there will be another output mask
.
The bboxes output of the engine did not divided by scale_factor
.
how to perform inference with the converted model.
from mmdet.apis import inference_detector
from mmdet2trt.apis import create_wrap_detector
# create wrap detector
trt_detector = create_wrap_detector(trt_model, cfg_path, device_id)
# result share same format as mmdetection
result = inference_detector(trt_detector, image_path)
Try demo in demo/inference.py
, or demo/cpp
if you want to do inference with c++ api.
Read getting_started.md for more details.
Most other project use pytorch=>ONNX=>tensorRT route, This repo convert pytorch=>tensorRT directly, avoid unnecessary ONNX IR. Read how-does-it-work for detail.
Note
Some models have only been tested on MMDet<3.0. If you found any failed model, Please report in the issue.
- Faster R-CNN
- Cascade R-CNN
- Double-Head R-CNN
- Group Normalization
- Weight Standardization
- DCN
- SSD
- RetinaNet
- Libra R-CNN
- FCOS
- Fovea
- CARAFE
- FreeAnchor
- RepPoints
- NAS-FPN
- ATSS
- PAFPN
- FSAF
- GCNet
- Guided Anchoring
- Generalized Attention
- Dynamic R-CNN
- Hybrid Task Cascade
- DetectoRS
- Side-Aware Boundary Localization
- YOLOv3
- PAA
- CornerNet(WIP)
- Generalized Focal Loss
- Grid RCNN
- VFNet
- GROIE
- Mask R-CNN(experiment)
- Cascade Mask R-CNN(experiment)
- Cascade RPN
- DETR
- YOLOX
Tested on:
- torch=2.2.0
- tensorrt=8.6.1
- mmdetection=3.3.0
- cuda=11.7
read this page if you meet any problem.
This project is released under the Apache 2.0 license.