This is a workflow manager which uses Airflow to automate all the Machine Learning and Data Pre-processing pipelines in our system. Some of the most important steps in our pipeline are
- Fetching and indexing raw data and entities which are in the bucket
- Economic News Detection (To-be-done)
- Text Extraction - By hitting the news URL and fetching data
- Some cleaning, indexing and preprocessing - Probably storing it in a relational database
- Sentiment Analysis
- Fuzzy Matching
- Entity Extraction
- Custom Scoring Model (BERT)
Airflow needs persistent storage to store the details of all the executions and pipelines. Right now, we run the postgres docker image as a temporary solution. We need to change it to production ready database.
When setting up airflow for the first time, we need to run the migrations which is in the docker-compose so that the tables can be setup.
- Set the $AIRFLOW_HOME to the current file root
export AIRFLOW_HOME=$(pwd)
- airflow.cfg shouldn't be copied
- remove the default airflow.cfg while setting up locally
airflow webserver
airflow backfill indexing -s 2019-12-30
airflow test indexing test_entities 2020-01-01
airflow test indexing test_entities 2020-01-01
docker-compose up initdb
docker-compose up --build
- delete .data and run
docker-compose up --build postgres
docker-compose up --build initdb
- and no airflow.cfg and unittest
- User Auth
- Disable auto-start
docker update --restart=no rey_worker_1 rey_scheduler_1 rey_webserver_1 rey_flower_1 rey_redis_1 rey_postgres_1
AIRFLOW__CORE__SQL_ALCHEMY_CONN=postgresql+psycopg2://airflow:airflow@postgres:5432/airflow
AIRFLOW__CORE__LOAD_EXAMPLES=False
AIRFLOW__WEBSERVER__RBAC=True
-
If you fuck up db
airflow resetdb
docker exec -it rey_scheduler_1 /entrypoint.sh bash
-
Creating a New User
airflow create_user -r Admin -u dev -e adarsh@alrt.ai -f username -l s -p password
-
Configuring Fernet Key for Production
Fetch the Fernet key and update initdb to make it work properly (using docker exec)
export FERNET_KEY = python -c "from cryptography.fernet import Fernet; FERNET_KEY = Fernet.generate_key().decode(); print(FERNET_KEY)"
MetaStore: postgresql+psycopg2://airflow:airflow@postgres:5432/airflow
BrokerURL: redis://redis:6379/1
For running workers on different nodes, connect to the metastore db and the redis queue by configuring
the docker-compose with POSTGRES_HOST
and REDIS_HOST
. Also remove the dependency to the local scheduler
- delete
/etc/nginx/sites-enabled/default
- create
/etc/nginx/conf.d/reverse-proxies.conf
- add A Record airflow
-
listen 80 default_server; listen [::]:80 default_server; server_name airflow.alrt.ai; location / { proxy_pass http://localhost:8080/; proxy_http_version 1.1; proxy_set_header Upgrade $http_upgrade; proxy_set_header Connection 'upgrade'; proxy_set_header Host $host; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_cache_bypass $http_upgrade; proxy_set_header X-Forwarded-Proto $scheme; }
}
## References
* [Configuring Airflow in docker-compose](https://medium.com/@xnuinside/quick-guide-how-to-run-apache-airflow-cluster-in-docker-compose-615eb8abd67a)
* [Best Practices](https://gtoonstra.github.io/etl-with-airflow/principles.html)
* [Config](https://github.com/kjam/data-pipelines-course/issues/1)
* [Fernet Key and Stuff](https://medium.com/@itunpredictable/apache-airflow-on-docker-for-complete-beginners-cf76cf7b2c9a)