- Primary Framework: TensorFlow
- Additional Libraries: None required for the basic example.
-
Install TensorFlow with CUDA using pip:
pip install tensorflow[and-cuda]
-
Verify the installation by running the following Python commands:
import tensorflow as tf print("TensorFlow version:", tf.__version__)
- For the specific installation process, refer to the Official Install Document.
-
Perform a simple addition operation using TensorFlow:
import tensorflow as tf # Define constants const1 = tf.constant([[1,2,3], [1,2,3]]) const2 = tf.constant([[3,4,5], [3,4,5]]) # Perform addition result = tf.add(const1, const2) # In TensorFlow 2.x, you can directly obtain the numerical values using the numpy() method print(result.numpy())
-
Load a dataset, build, and train a machine learning model using TensorFlow:
import tensorflow as tf # Load the MNIST dataset mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 # Build a tf.keras.Sequential model model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10) ])
-
Compile and train the model:
model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) # Train the model model.fit(x_train, y_train, epochs=5) # Evaluate the model model.evaluate(x_test, y_test, verbose=2)
- Name: Jiaying Wang Email: wangj63@rpi.edu
- TensorFlow 2 Quickstart for Beginners: TensorFlow Official Documentation
- TensorFlow Gradient Example: TensorFlow Core
- TensorFlow Placeholders and Filters Example: RipTutorial