A Pytorch implementation of QANet
This repository is based on NLPLearn/QANet and marquezo/qanet-impl
It can get em: 70.155 and f1: 79.432 peformance after 22 epochs(2730 batches per epoch) with EMA.
- PyTorch >= 0.4.0
- torcheras
- spacy
- tqdm
$ mkdir data
$ python preprocess.py
$ mkdir log
$ mkdir log/qanet
$ python train.py 'some description'
First set the log folder and epoch number in evaluate.py then execute the script.
$ python evaluate.py
- pickle.dump will get an "OSError: [Errno 22] Invalid argument" error on OS X when saving the "train context char" data, it's ok on Ubuntu 16.04.