-
Notifications
You must be signed in to change notification settings - Fork 50
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add support for pipeline digest in JSON and YAML format #238
Conversation
Here's an example of a YAML digest: Click to expand..._logger: null
autofeaturizer:
autofeaturizer:
_logger: null
auto_featurizer: true
bandstruct_col: bandstructure
cache_src: null
composition_col: composition
converted_input_df:
columns: 3
obj: <not serializable>
samples: 537
do_precheck: true
dos_col: dos
drop_inputs: true
exclude: []
features:
- MagpieData minimum Number
- MagpieData maximum Number
- MagpieData range Number
- MagpieData mean Number
- MagpieData avg_dev Number
- MagpieData mode Number
- MagpieData minimum MendeleevNumber
- MagpieData maximum MendeleevNumber
- MagpieData range MendeleevNumber
- MagpieData mean MendeleevNumber
- MagpieData avg_dev MendeleevNumber
- MagpieData mode MendeleevNumber
- MagpieData minimum AtomicWeight
- MagpieData maximum AtomicWeight
- MagpieData range AtomicWeight
- MagpieData mean AtomicWeight
- MagpieData avg_dev AtomicWeight
- MagpieData mode AtomicWeight
- MagpieData minimum MeltingT
- MagpieData maximum MeltingT
- MagpieData range MeltingT
- MagpieData mean MeltingT
- MagpieData avg_dev MeltingT
- MagpieData mode MeltingT
- MagpieData minimum Column
- MagpieData maximum Column
- MagpieData range Column
- MagpieData mean Column
- MagpieData avg_dev Column
- MagpieData mode Column
- MagpieData minimum Row
- MagpieData maximum Row
- MagpieData range Row
- MagpieData mean Row
- MagpieData avg_dev Row
- MagpieData mode Row
- MagpieData minimum CovalentRadius
- MagpieData maximum CovalentRadius
- MagpieData range CovalentRadius
- MagpieData mean CovalentRadius
- MagpieData avg_dev CovalentRadius
- MagpieData mode CovalentRadius
- MagpieData minimum Electronegativity
- MagpieData maximum Electronegativity
- MagpieData range Electronegativity
- MagpieData mean Electronegativity
- MagpieData avg_dev Electronegativity
- MagpieData mode Electronegativity
- MagpieData minimum NsValence
- MagpieData maximum NsValence
- MagpieData range NsValence
- MagpieData mean NsValence
- MagpieData avg_dev NsValence
- MagpieData mode NsValence
- MagpieData minimum NpValence
- MagpieData maximum NpValence
- MagpieData range NpValence
- MagpieData mean NpValence
- MagpieData avg_dev NpValence
- MagpieData mode NpValence
- MagpieData minimum NdValence
- MagpieData maximum NdValence
- MagpieData range NdValence
- MagpieData mean NdValence
- MagpieData avg_dev NdValence
- MagpieData mode NdValence
- MagpieData minimum NfValence
- MagpieData maximum NfValence
- MagpieData range NfValence
- MagpieData mean NfValence
- MagpieData avg_dev NfValence
- MagpieData mode NfValence
- MagpieData minimum NValence
- MagpieData maximum NValence
- MagpieData range NValence
- MagpieData mean NValence
- MagpieData avg_dev NValence
- MagpieData mode NValence
- MagpieData minimum NsUnfilled
- MagpieData maximum NsUnfilled
- MagpieData range NsUnfilled
- MagpieData mean NsUnfilled
- MagpieData avg_dev NsUnfilled
- MagpieData mode NsUnfilled
- MagpieData minimum NpUnfilled
- MagpieData maximum NpUnfilled
- MagpieData range NpUnfilled
- MagpieData mean NpUnfilled
- MagpieData avg_dev NpUnfilled
- MagpieData mode NpUnfilled
- MagpieData minimum NdUnfilled
- MagpieData maximum NdUnfilled
- MagpieData range NdUnfilled
- MagpieData mean NdUnfilled
- MagpieData avg_dev NdUnfilled
- MagpieData mode NdUnfilled
- MagpieData minimum NfUnfilled
- MagpieData maximum NfUnfilled
- MagpieData range NfUnfilled
- MagpieData mean NfUnfilled
- MagpieData avg_dev NfUnfilled
- MagpieData mode NfUnfilled
- MagpieData minimum NUnfilled
- MagpieData maximum NUnfilled
- MagpieData range NUnfilled
- MagpieData mean NUnfilled
- MagpieData avg_dev NUnfilled
- MagpieData mode NUnfilled
- MagpieData minimum GSvolume_pa
- MagpieData maximum GSvolume_pa
- MagpieData range GSvolume_pa
- MagpieData mean GSvolume_pa
- MagpieData avg_dev GSvolume_pa
- MagpieData mode GSvolume_pa
- MagpieData minimum GSbandgap
- MagpieData maximum GSbandgap
- MagpieData range GSbandgap
- MagpieData mean GSbandgap
- MagpieData avg_dev GSbandgap
- MagpieData mode GSbandgap
- MagpieData minimum GSmagmom
- MagpieData maximum GSmagmom
- MagpieData range GSmagmom
- MagpieData mean GSmagmom
- MagpieData avg_dev GSmagmom
- MagpieData mode GSmagmom
- MagpieData minimum SpaceGroupNumber
- MagpieData maximum SpaceGroupNumber
- MagpieData range SpaceGroupNumber
- MagpieData mean SpaceGroupNumber
- MagpieData avg_dev SpaceGroupNumber
- MagpieData mode SpaceGroupNumber
- minimum oxidation state
- maximum oxidation state
- range oxidation state
- std_dev oxidation state
- avg anion electron affinity
- compound possible
- max ionic char
- avg ionic char
featurizers:
bandstructure:
- <not serializable>
- <not serializable>
composition:
- <not serializable>
- <not serializable>
- <not serializable>
- <not serializable>
dos:
- <not serializable>
- <not serializable>
- <not serializable>
- <not serializable>
structure:
- <not serializable>
- <not serializable>
- <not serializable>
- <not serializable>
- <not serializable>
fittable_fcls: <not serializable>
fitted_input_df:
columns: 3
obj: <not serializable>
samples: 537
functionalize: false
guess_oxistates: true
ignore_cols: []
ignore_errors: true
is_fit: true
min_precheck_frac: 0.9
multiindex: false
n_jobs: null
needs_fit: false
preset: express
removed_featurizers:
- <not serializable>
- <not serializable>
structure_col: structure
cleaner:
cleaner:
_logger: null
drop_na_targets: true
dropped_features:
- max ionic char
- maximum oxidation state
- avg ionic char
- avg anion electron affinity
- std_dev oxidation state
- compound possible
- minimum oxidation state
- range oxidation state
dropped_samples:
columns: 142
obj: <not serializable>
samples: 0
encode_categories: true
encoder: one-hot
feature_na_method: drop
fitted_df:
columns: 134
obj: <not serializable>
samples: 537
fitted_target: zT
is_fit: true
max_na_frac: 0.01
na_method_fit: drop
na_method_transform: fill
number_cols:
- T
- MagpieData minimum Number
- MagpieData maximum Number
- MagpieData range Number
- MagpieData mean Number
- MagpieData avg_dev Number
- MagpieData mode Number
- MagpieData minimum MendeleevNumber
- MagpieData maximum MendeleevNumber
- MagpieData range MendeleevNumber
- MagpieData mean MendeleevNumber
- MagpieData avg_dev MendeleevNumber
- MagpieData mode MendeleevNumber
- MagpieData minimum AtomicWeight
- MagpieData maximum AtomicWeight
- MagpieData range AtomicWeight
- MagpieData mean AtomicWeight
- MagpieData avg_dev AtomicWeight
- MagpieData mode AtomicWeight
- MagpieData minimum MeltingT
- MagpieData maximum MeltingT
- MagpieData range MeltingT
- MagpieData mean MeltingT
- MagpieData avg_dev MeltingT
- MagpieData mode MeltingT
- MagpieData minimum Column
- MagpieData maximum Column
- MagpieData range Column
- MagpieData mean Column
- MagpieData avg_dev Column
- MagpieData mode Column
- MagpieData minimum Row
- MagpieData maximum Row
- MagpieData range Row
- MagpieData mean Row
- MagpieData avg_dev Row
- MagpieData mode Row
- MagpieData minimum CovalentRadius
- MagpieData maximum CovalentRadius
- MagpieData range CovalentRadius
- MagpieData mean CovalentRadius
- MagpieData avg_dev CovalentRadius
- MagpieData mode CovalentRadius
- MagpieData minimum Electronegativity
- MagpieData maximum Electronegativity
- MagpieData range Electronegativity
- MagpieData mean Electronegativity
- MagpieData avg_dev Electronegativity
- MagpieData mode Electronegativity
- MagpieData minimum NsValence
- MagpieData maximum NsValence
- MagpieData range NsValence
- MagpieData mean NsValence
- MagpieData avg_dev NsValence
- MagpieData mode NsValence
- MagpieData minimum NpValence
- MagpieData maximum NpValence
- MagpieData range NpValence
- MagpieData mean NpValence
- MagpieData avg_dev NpValence
- MagpieData mode NpValence
- MagpieData minimum NdValence
- MagpieData maximum NdValence
- MagpieData range NdValence
- MagpieData mean NdValence
- MagpieData avg_dev NdValence
- MagpieData mode NdValence
- MagpieData minimum NfValence
- MagpieData maximum NfValence
- MagpieData range NfValence
- MagpieData mean NfValence
- MagpieData avg_dev NfValence
- MagpieData mode NfValence
- MagpieData minimum NValence
- MagpieData maximum NValence
- MagpieData range NValence
- MagpieData mean NValence
- MagpieData avg_dev NValence
- MagpieData mode NValence
- MagpieData minimum NsUnfilled
- MagpieData maximum NsUnfilled
- MagpieData range NsUnfilled
- MagpieData mean NsUnfilled
- MagpieData avg_dev NsUnfilled
- MagpieData mode NsUnfilled
- MagpieData minimum NpUnfilled
- MagpieData maximum NpUnfilled
- MagpieData range NpUnfilled
- MagpieData mean NpUnfilled
- MagpieData avg_dev NpUnfilled
- MagpieData mode NpUnfilled
- MagpieData minimum NdUnfilled
- MagpieData maximum NdUnfilled
- MagpieData range NdUnfilled
- MagpieData mean NdUnfilled
- MagpieData avg_dev NdUnfilled
- MagpieData mode NdUnfilled
- MagpieData minimum NfUnfilled
- MagpieData maximum NfUnfilled
- MagpieData range NfUnfilled
- MagpieData mean NfUnfilled
- MagpieData avg_dev NfUnfilled
- MagpieData mode NfUnfilled
- MagpieData minimum NUnfilled
- MagpieData maximum NUnfilled
- MagpieData range NUnfilled
- MagpieData mean NUnfilled
- MagpieData avg_dev NUnfilled
- MagpieData mode NUnfilled
- MagpieData minimum GSvolume_pa
- MagpieData maximum GSvolume_pa
- MagpieData range GSvolume_pa
- MagpieData mean GSvolume_pa
- MagpieData avg_dev GSvolume_pa
- MagpieData mode GSvolume_pa
- MagpieData minimum GSbandgap
- MagpieData maximum GSbandgap
- MagpieData range GSbandgap
- MagpieData mean GSbandgap
- MagpieData avg_dev GSbandgap
- MagpieData mode GSbandgap
- MagpieData minimum GSmagmom
- MagpieData maximum GSmagmom
- MagpieData range GSmagmom
- MagpieData mean GSmagmom
- MagpieData avg_dev GSmagmom
- MagpieData mode GSmagmom
- MagpieData minimum SpaceGroupNumber
- MagpieData maximum SpaceGroupNumber
- MagpieData range SpaceGroupNumber
- MagpieData mean SpaceGroupNumber
- MagpieData avg_dev SpaceGroupNumber
- MagpieData mode SpaceGroupNumber
- minimum oxidation state
- maximum oxidation state
- range oxidation state
- std_dev oxidation state
- avg anion electron affinity
- compound possible
- max ionic char
- avg ionic char
object_cols: []
is_fit: true
learner:
learner:
_backend: <not serializable>
_features:
- T
- MagpieData mean Number
- MagpieData mean MendeleevNumber
- MagpieData avg_dev MendeleevNumber
- MagpieData maximum AtomicWeight
- MagpieData range AtomicWeight
- MagpieData avg_dev AtomicWeight
- MagpieData minimum MeltingT
- MagpieData mean MeltingT
- MagpieData mean Column
- MagpieData avg_dev Row
- MagpieData minimum CovalentRadius
- MagpieData range CovalentRadius
- MagpieData mean CovalentRadius
- MagpieData avg_dev CovalentRadius
- MagpieData maximum Electronegativity
- MagpieData range Electronegativity
- MagpieData mean Electronegativity
- MagpieData avg_dev Electronegativity
- MagpieData avg_dev NpValence
- MagpieData mean NdValence
- MagpieData mode NdValence
- MagpieData mean NfValence
- MagpieData avg_dev NfValence
- MagpieData maximum NValence
- MagpieData mean NValence
- MagpieData avg_dev NValence
- MagpieData mode NValence
- MagpieData range NpUnfilled
- MagpieData mean NpUnfilled
- MagpieData avg_dev NpUnfilled
- MagpieData range NUnfilled
- MagpieData mean NUnfilled
- MagpieData avg_dev NUnfilled
- MagpieData minimum GSvolume_pa
- MagpieData range GSvolume_pa
- MagpieData mean GSvolume_pa
- MagpieData avg_dev GSvolume_pa
- MagpieData mean SpaceGroupNumber
- MagpieData avg_dev SpaceGroupNumber
_fitted_target: zT
_logger: null
greater_score_is_better: null
is_fit: true
mode: regression
models: null
random_state: null
tpot_kwargs:
config_dict:
sklearn.cluster.FeatureAgglomeration:
affinity:
- euclidean
- l1
- l2
- manhattan
- cosine
linkage:
- ward
- complete
- average
sklearn.decomposition.FastICA:
tol: <not serializable>
sklearn.decomposition.PCA:
iterated_power: <not serializable>
svd_solver:
- randomized
sklearn.ensemble.ExtraTreesRegressor:
bootstrap:
- true
- false
max_features: <not serializable>
min_samples_leaf: <not serializable>
min_samples_split: <not serializable>
n_estimators:
- 20
- 100
- 200
- 500
- 1000
sklearn.ensemble.GradientBoostingRegressor:
alpha:
- 0.75
- 0.8
- 0.85
- 0.9
- 0.95
- 0.99
learning_rate:
- 0.01
- 0.1
- 0.5
- 1.0
loss:
- ls
- lad
- huber
- quantile
max_depth: <not serializable>
max_features: <not serializable>
min_samples_leaf: <not serializable>
min_samples_split: <not serializable>
n_estimators:
- 20
- 100
- 200
- 500
- 1000
subsample: <not serializable>
sklearn.ensemble.RandomForestRegressor:
bootstrap:
- true
- false
max_features: <not serializable>
min_samples_leaf: <not serializable>
min_samples_split: <not serializable>
n_estimators:
- 20
- 100
- 200
- 500
- 1000
sklearn.feature_selection.SelectFromModel:
estimator:
sklearn.ensemble.ExtraTreesRegressor:
max_features: <not serializable>
n_estimators:
- 100
threshold: <not serializable>
sklearn.feature_selection.SelectFwe:
alpha: <not serializable>
score_func:
sklearn.feature_selection.f_regression: null
sklearn.feature_selection.SelectPercentile:
percentile: <not serializable>
score_func:
sklearn.feature_selection.f_regression: null
sklearn.feature_selection.VarianceThreshold:
threshold:
- 0.0001
- 0.0005
- 0.001
- 0.005
- 0.01
- 0.05
- 0.1
- 0.2
sklearn.kernel_approximation.Nystroem:
gamma: <not serializable>
kernel:
- rbf
- cosine
- chi2
- laplacian
- polynomial
- poly
- linear
- additive_chi2
- sigmoid
n_components: <not serializable>
sklearn.kernel_approximation.RBFSampler:
gamma: <not serializable>
sklearn.linear_model.ElasticNetCV:
l1_ratio: <not serializable>
tol:
- 1e-05
- 0.0001
- 0.001
- 0.01
- 0.1
sklearn.linear_model.LassoLarsCV:
normalize:
- true
- false
sklearn.linear_model.RidgeCV: {}
sklearn.neighbors.KNeighborsRegressor:
n_neighbors: <not serializable>
p:
- 1
- 2
weights:
- uniform
- distance
sklearn.preprocessing.Binarizer:
threshold: <not serializable>
sklearn.preprocessing.MaxAbsScaler: {}
sklearn.preprocessing.MinMaxScaler: {}
sklearn.preprocessing.Normalizer:
norm:
- l1
- l2
- max
sklearn.preprocessing.PolynomialFeatures:
degree:
- 2
include_bias:
- false
interaction_only:
- false
sklearn.preprocessing.RobustScaler: {}
sklearn.preprocessing.StandardScaler: {}
sklearn.svm.LinearSVR:
C:
- 0.0001
- 0.001
- 0.01
- 0.1
- 0.5
- 1.0
- 5.0
- 10.0
- 15.0
- 20.0
- 25.0
dual:
- true
- false
epsilon:
- 0.0001
- 0.001
- 0.01
- 0.1
- 1.0
loss:
- epsilon_insensitive
- squared_epsilon_insensitive
tol:
- 1e-05
- 0.0001
- 0.001
- 0.01
- 0.1
sklearn.tree.DecisionTreeRegressor:
max_depth: <not serializable>
min_samples_leaf: <not serializable>
min_samples_split: <not serializable>
tpot.builtins.OneHotEncoder:
minimum_fraction:
- 0.05
- 0.1
- 0.15
- 0.2
- 0.25
sparse:
- false
threshold:
- 10
tpot.builtins.ZeroCount: {}
xgboost.XGBRegressor:
learning_rate:
- 0.01
- 0.1
- 0.5
- 1.0
max_depth: <not serializable>
min_child_weight: <not serializable>
n_estimators:
- 20
- 100
- 200
- 500
- 1000
nthread:
- 1
subsample: <not serializable>
cv: 5
max_time_mins: 60
memory: auto
n_jobs: -1
population_size: 20
scoring: neg_mean_absolute_error
template: Selector-Transformer-Regressor
verbosity: 3
ml_type: regression
post_fit_df:
columns: 41
obj: <not serializable>
samples: 537
pre_fit_df:
columns: 3
obj: <not serializable>
samples: 537
reducer:
reducer:
_keep_features: []
_logger: null
_pca: null
_pca_feats: null
_remove_features: []
corr_threshold: 0.95
is_fit: true
n_pca_features: auto
n_rebate_features: 0.3
reducer_params:
tree:
importance_percentile: 0.99
mode: regression
random_state: 0
reducers:
- corr
- tree
removed_features:
corr:
- MagpieData maximum Number
- MagpieData range Number
- MagpieData avg_dev Number
- MagpieData mode Number
- MagpieData maximum MendeleevNumber
- MagpieData range MendeleevNumber
- MagpieData minimum AtomicWeight
- MagpieData mean AtomicWeight
- MagpieData mode AtomicWeight
- MagpieData minimum Column
- MagpieData mean Row
- MagpieData range NsValence
- MagpieData mean NsValence
- MagpieData avg_dev NsValence
- MagpieData minimum NfValence
- MagpieData maximum NfValence
- MagpieData maximum NsUnfilled
- MagpieData range NsUnfilled
- MagpieData mean NsUnfilled
- MagpieData range NdUnfilled
- MagpieData maximum NfUnfilled
- MagpieData range NfUnfilled
- MagpieData mean NfUnfilled
- MagpieData range GSbandgap
- MagpieData mean GSbandgap
- MagpieData avg_dev GSbandgap
- MagpieData maximum GSmagmom
- MagpieData range GSmagmom
- MagpieData mean GSmagmom
- MagpieData avg_dev GSmagmom
- MagpieData minimum SpaceGroupNumber
tree:
- MagpieData minimum Number
- MagpieData minimum MendeleevNumber
- MagpieData mode MendeleevNumber
- MagpieData maximum MeltingT
- MagpieData range MeltingT
- MagpieData avg_dev MeltingT
- MagpieData mode MeltingT
- MagpieData maximum Column
- MagpieData range Column
- MagpieData avg_dev Column
- MagpieData mode Column
- MagpieData minimum Row
- MagpieData maximum Row
- MagpieData range Row
- MagpieData mode Row
- MagpieData maximum CovalentRadius
- MagpieData mode CovalentRadius
- MagpieData minimum Electronegativity
- MagpieData mode Electronegativity
- MagpieData minimum NsValence
- MagpieData maximum NsValence
- MagpieData mode NsValence
- MagpieData minimum NpValence
- MagpieData maximum NpValence
- MagpieData range NpValence
- MagpieData mean NpValence
- MagpieData mode NpValence
- MagpieData minimum NdValence
- MagpieData maximum NdValence
- MagpieData range NdValence
- MagpieData avg_dev NdValence
- MagpieData range NfValence
- MagpieData mode NfValence
- MagpieData minimum NValence
- MagpieData range NValence
- MagpieData minimum NsUnfilled
- MagpieData avg_dev NsUnfilled
- MagpieData mode NsUnfilled
- MagpieData minimum NpUnfilled
- MagpieData maximum NpUnfilled
- MagpieData mode NpUnfilled
- MagpieData minimum NdUnfilled
- MagpieData maximum NdUnfilled
- MagpieData mean NdUnfilled
- MagpieData avg_dev NdUnfilled
- MagpieData mode NdUnfilled
- MagpieData minimum NfUnfilled
- MagpieData avg_dev NfUnfilled
- MagpieData mode NfUnfilled
- MagpieData minimum NUnfilled
- MagpieData maximum NUnfilled
- MagpieData mode NUnfilled
- MagpieData maximum GSvolume_pa
- MagpieData mode GSvolume_pa
- MagpieData minimum GSbandgap
- MagpieData maximum GSbandgap
- MagpieData mode GSbandgap
- MagpieData minimum GSmagmom
- MagpieData mode GSmagmom
- MagpieData maximum SpaceGroupNumber
- MagpieData range SpaceGroupNumber
- MagpieData mode SpaceGroupNumber
retained_features:
- MagpieData minimum MeltingT
- MagpieData mean Column
- MagpieData avg_dev MendeleevNumber
- MagpieData range NUnfilled
- MagpieData avg_dev NpUnfilled
- MagpieData mean NUnfilled
- MagpieData minimum GSvolume_pa
- MagpieData mean NValence
- MagpieData avg_dev SpaceGroupNumber
- MagpieData mean Number
- MagpieData range NpUnfilled
- MagpieData avg_dev CovalentRadius
- MagpieData mean MendeleevNumber
- T
- MagpieData avg_dev NpValence
- MagpieData mean Electronegativity
- MagpieData mode NValence
- MagpieData mean NdValence
- MagpieData avg_dev NValence
- MagpieData mode NdValence
- MagpieData mean MeltingT
- MagpieData avg_dev NfValence
- MagpieData mean GSvolume_pa
- MagpieData maximum NValence
- MagpieData mean CovalentRadius
- MagpieData range GSvolume_pa
- MagpieData maximum AtomicWeight
- MagpieData maximum Electronegativity
- MagpieData mean NfValence
- MagpieData range AtomicWeight
- MagpieData avg_dev AtomicWeight
- MagpieData mean NpUnfilled
- MagpieData avg_dev NUnfilled
- MagpieData avg_dev Row
- MagpieData avg_dev Electronegativity
- MagpieData minimum CovalentRadius
- MagpieData avg_dev GSvolume_pa
- MagpieData range CovalentRadius
- MagpieData range Electronegativity
- MagpieData mean SpaceGroupNumber
tree_importance_percentile: 0.99
target: zT |
Hey @janosh thanks for the PR! This is a great idea. Yes, we do need some tests for it. You could just add them onto the existing test for test_persistence_and_digest. Also, we'll need to update the requirements file with a yaml version (this is why current test is failing). In some of our other projects we use |
@ardunn I added some tests and |
Also, there might be a more sophisticated way to handle non-serializable attributes than |
@janosh it might be sufficient to output the Which attributes are not json serializable as text/lists though? My thoughts are to have |
I just played around a bit more with Click to expand..._logger: null
autofeaturizer:
autofeaturizer:
_logger: null
auto_featurizer: true
bandstruct_col: bandstructure
cache_src: null
composition_col: composition
converted_input_df:
columns: 3
obj: <class 'pandas.core.frame.DataFrame'>
samples: 537
do_precheck: true
dos_col: dos
drop_inputs: true
exclude: []
features:
- MagpieData minimum Number
- MagpieData maximum Number
- MagpieData range Number
- MagpieData mean Number
- MagpieData avg_dev Number
- MagpieData mode Number
- MagpieData minimum MendeleevNumber
- MagpieData maximum MendeleevNumber
- MagpieData range MendeleevNumber
- MagpieData mean MendeleevNumber
- MagpieData avg_dev MendeleevNumber
- MagpieData mode MendeleevNumber
- MagpieData minimum AtomicWeight
- MagpieData maximum AtomicWeight
- MagpieData range AtomicWeight
- MagpieData mean AtomicWeight
- MagpieData avg_dev AtomicWeight
- MagpieData mode AtomicWeight
- MagpieData minimum MeltingT
- MagpieData maximum MeltingT
- MagpieData range MeltingT
- MagpieData mean MeltingT
- MagpieData avg_dev MeltingT
- MagpieData mode MeltingT
- MagpieData minimum Column
- MagpieData maximum Column
- MagpieData range Column
- MagpieData mean Column
- MagpieData avg_dev Column
- MagpieData mode Column
- MagpieData minimum Row
- MagpieData maximum Row
- MagpieData range Row
- MagpieData mean Row
- MagpieData avg_dev Row
- MagpieData mode Row
- MagpieData minimum CovalentRadius
- MagpieData maximum CovalentRadius
- MagpieData range CovalentRadius
- MagpieData mean CovalentRadius
- MagpieData avg_dev CovalentRadius
- MagpieData mode CovalentRadius
- MagpieData minimum Electronegativity
- MagpieData maximum Electronegativity
- MagpieData range Electronegativity
- MagpieData mean Electronegativity
- MagpieData avg_dev Electronegativity
- MagpieData mode Electronegativity
- MagpieData minimum NsValence
- MagpieData maximum NsValence
- MagpieData range NsValence
- MagpieData mean NsValence
- MagpieData avg_dev NsValence
- MagpieData mode NsValence
- MagpieData minimum NpValence
- MagpieData maximum NpValence
- MagpieData range NpValence
- MagpieData mean NpValence
- MagpieData avg_dev NpValence
- MagpieData mode NpValence
- MagpieData minimum NdValence
- MagpieData maximum NdValence
- MagpieData range NdValence
- MagpieData mean NdValence
- MagpieData avg_dev NdValence
- MagpieData mode NdValence
- MagpieData minimum NfValence
- MagpieData maximum NfValence
- MagpieData range NfValence
- MagpieData mean NfValence
- MagpieData avg_dev NfValence
- MagpieData mode NfValence
- MagpieData minimum NValence
- MagpieData maximum NValence
- MagpieData range NValence
- MagpieData mean NValence
- MagpieData avg_dev NValence
- MagpieData mode NValence
- MagpieData minimum NsUnfilled
- MagpieData maximum NsUnfilled
- MagpieData range NsUnfilled
- MagpieData mean NsUnfilled
- MagpieData avg_dev NsUnfilled
- MagpieData mode NsUnfilled
- MagpieData minimum NpUnfilled
- MagpieData maximum NpUnfilled
- MagpieData range NpUnfilled
- MagpieData mean NpUnfilled
- MagpieData avg_dev NpUnfilled
- MagpieData mode NpUnfilled
- MagpieData minimum NdUnfilled
- MagpieData maximum NdUnfilled
- MagpieData range NdUnfilled
- MagpieData mean NdUnfilled
- MagpieData avg_dev NdUnfilled
- MagpieData mode NdUnfilled
- MagpieData minimum NfUnfilled
- MagpieData maximum NfUnfilled
- MagpieData range NfUnfilled
- MagpieData mean NfUnfilled
- MagpieData avg_dev NfUnfilled
- MagpieData mode NfUnfilled
- MagpieData minimum NUnfilled
- MagpieData maximum NUnfilled
- MagpieData range NUnfilled
- MagpieData mean NUnfilled
- MagpieData avg_dev NUnfilled
- MagpieData mode NUnfilled
- MagpieData minimum GSvolume_pa
- MagpieData maximum GSvolume_pa
- MagpieData range GSvolume_pa
- MagpieData mean GSvolume_pa
- MagpieData avg_dev GSvolume_pa
- MagpieData mode GSvolume_pa
- MagpieData minimum GSbandgap
- MagpieData maximum GSbandgap
- MagpieData range GSbandgap
- MagpieData mean GSbandgap
- MagpieData avg_dev GSbandgap
- MagpieData mode GSbandgap
- MagpieData minimum GSmagmom
- MagpieData maximum GSmagmom
- MagpieData range GSmagmom
- MagpieData mean GSmagmom
- MagpieData avg_dev GSmagmom
- MagpieData mode GSmagmom
- MagpieData minimum SpaceGroupNumber
- MagpieData maximum SpaceGroupNumber
- MagpieData range SpaceGroupNumber
- MagpieData mean SpaceGroupNumber
- MagpieData avg_dev SpaceGroupNumber
- MagpieData mode SpaceGroupNumber
- minimum oxidation state
- maximum oxidation state
- range oxidation state
- std_dev oxidation state
- avg anion electron affinity
- compound possible
- max ionic char
- avg ionic char
featurizers:
bandstructure:
- BandFeaturizer(find_method='nearest', kpoints=None, nbands=2)
- BranchPointEnergy(atol=1e-05, calculate_band_edges=True, n_cb=1, n_vb=1)
composition:
- "ElementProperty(data_source=<matminer.utils.data.MagpieData object at 0x131635cc0>,\n\
\ features=['Number', 'MendeleevNumber', 'AtomicWeight',\n\
\ 'MeltingT', 'Column', 'Row', 'CovalentRadius',\n\
\ 'Electronegativity', 'NsValence', 'NpValence',\n\
\ 'NdValence', 'NfValence', 'NValence', 'NsUnfilled',\n\
\ 'NpUnfilled', 'NdUnfilled', 'NfUnfilled', 'NUnfilled',\n\
\ 'GSvolume_pa', 'GSbandgap', 'GSmagmom',\n \
\ 'SpaceGroupNumber'],\n stats=['minimum',\
\ 'maximum', 'range', 'mean', 'avg_dev',\n 'mode'])"
- OxidationStates(stats=['minimum', 'maximum', 'range', 'std_dev'])
- ElectronAffinity()
- "IonProperty(data_source=<matminer.utils.data.PymatgenData object at 0x11740dda0>,\n\
\ fast=False)"
dos:
- "DOSFeaturizer(contributors=1, decay_length=0.1, gaussian_smear=0.05,\n \
\ sampling_resolution=100)"
- DopingFermi(T=300, dopings=[-1e+20, 1e+20], eref='midgap', return_eref=False)
- "Hybridization(decay_length=0.1, gaussian_smear=0.05, sampling_resolution=100,\n\
\ species=[])"
- DosAsymmetry(decay_length=0.5, gaussian_smear=0.05, sampling_resolution=100)
structure:
- DensityFeatures(desired_features=None)
- GlobalSymmetryFeatures(desired_features=None)
- EwaldEnergy(accuracy=4)
- SineCoulombMatrix(diag_elems=True, flatten=True)
- GlobalInstabilityIndex(disordered_pymatgen=False, r_cut=4.0)
fittable_fcls: '{''BondFractions'', ''BagofBonds'', ''PartialRadialDistributionFunction''}'
fitted_input_df:
columns: 3
obj: <class 'pandas.core.frame.DataFrame'>
samples: 537
functionalize: false
guess_oxistates: true
ignore_cols: []
ignore_errors: true
is_fit: true
min_precheck_frac: 0.9
multiindex: false
n_jobs: null
needs_fit: false
preset: express
removed_featurizers:
- YangSolidSolution()
- "Miedema(data_source='Miedema', ss_types=['min'],\n struct_types=['inter',\
\ 'amor', 'ss'])"
structure_col: structure
cleaner:
cleaner:
_logger: null
drop_na_targets: true
dropped_features:
- max ionic char
- maximum oxidation state
- avg ionic char
- avg anion electron affinity
- std_dev oxidation state
- compound possible
- minimum oxidation state
- range oxidation state
dropped_samples:
columns: 142
obj: <class 'pandas.core.frame.DataFrame'>
samples: 0
encode_categories: true
encoder: one-hot
feature_na_method: drop
fitted_df:
columns: 134
obj: <class 'pandas.core.frame.DataFrame'>
samples: 537
fitted_target: zT
is_fit: true
max_na_frac: 0.01
na_method_fit: drop
na_method_transform: fill
number_cols:
- T
- MagpieData minimum Number
- MagpieData maximum Number
- MagpieData range Number
- MagpieData mean Number
- MagpieData avg_dev Number
- MagpieData mode Number
- MagpieData minimum MendeleevNumber
- MagpieData maximum MendeleevNumber
- MagpieData range MendeleevNumber
- MagpieData mean MendeleevNumber
- MagpieData avg_dev MendeleevNumber
- MagpieData mode MendeleevNumber
- MagpieData minimum AtomicWeight
- MagpieData maximum AtomicWeight
- MagpieData range AtomicWeight
- MagpieData mean AtomicWeight
- MagpieData avg_dev AtomicWeight
- MagpieData mode AtomicWeight
- MagpieData minimum MeltingT
- MagpieData maximum MeltingT
- MagpieData range MeltingT
- MagpieData mean MeltingT
- MagpieData avg_dev MeltingT
- MagpieData mode MeltingT
- MagpieData minimum Column
- MagpieData maximum Column
- MagpieData range Column
- MagpieData mean Column
- MagpieData avg_dev Column
- MagpieData mode Column
- MagpieData minimum Row
- MagpieData maximum Row
- MagpieData range Row
- MagpieData mean Row
- MagpieData avg_dev Row
- MagpieData mode Row
- MagpieData minimum CovalentRadius
- MagpieData maximum CovalentRadius
- MagpieData range CovalentRadius
- MagpieData mean CovalentRadius
- MagpieData avg_dev CovalentRadius
- MagpieData mode CovalentRadius
- MagpieData minimum Electronegativity
- MagpieData maximum Electronegativity
- MagpieData range Electronegativity
- MagpieData mean Electronegativity
- MagpieData avg_dev Electronegativity
- MagpieData mode Electronegativity
- MagpieData minimum NsValence
- MagpieData maximum NsValence
- MagpieData range NsValence
- MagpieData mean NsValence
- MagpieData avg_dev NsValence
- MagpieData mode NsValence
- MagpieData minimum NpValence
- MagpieData maximum NpValence
- MagpieData range NpValence
- MagpieData mean NpValence
- MagpieData avg_dev NpValence
- MagpieData mode NpValence
- MagpieData minimum NdValence
- MagpieData maximum NdValence
- MagpieData range NdValence
- MagpieData mean NdValence
- MagpieData avg_dev NdValence
- MagpieData mode NdValence
- MagpieData minimum NfValence
- MagpieData maximum NfValence
- MagpieData range NfValence
- MagpieData mean NfValence
- MagpieData avg_dev NfValence
- MagpieData mode NfValence
- MagpieData minimum NValence
- MagpieData maximum NValence
- MagpieData range NValence
- MagpieData mean NValence
- MagpieData avg_dev NValence
- MagpieData mode NValence
- MagpieData minimum NsUnfilled
- MagpieData maximum NsUnfilled
- MagpieData range NsUnfilled
- MagpieData mean NsUnfilled
- MagpieData avg_dev NsUnfilled
- MagpieData mode NsUnfilled
- MagpieData minimum NpUnfilled
- MagpieData maximum NpUnfilled
- MagpieData range NpUnfilled
- MagpieData mean NpUnfilled
- MagpieData avg_dev NpUnfilled
- MagpieData mode NpUnfilled
- MagpieData minimum NdUnfilled
- MagpieData maximum NdUnfilled
- MagpieData range NdUnfilled
- MagpieData mean NdUnfilled
- MagpieData avg_dev NdUnfilled
- MagpieData mode NdUnfilled
- MagpieData minimum NfUnfilled
- MagpieData maximum NfUnfilled
- MagpieData range NfUnfilled
- MagpieData mean NfUnfilled
- MagpieData avg_dev NfUnfilled
- MagpieData mode NfUnfilled
- MagpieData minimum NUnfilled
- MagpieData maximum NUnfilled
- MagpieData range NUnfilled
- MagpieData mean NUnfilled
- MagpieData avg_dev NUnfilled
- MagpieData mode NUnfilled
- MagpieData minimum GSvolume_pa
- MagpieData maximum GSvolume_pa
- MagpieData range GSvolume_pa
- MagpieData mean GSvolume_pa
- MagpieData avg_dev GSvolume_pa
- MagpieData mode GSvolume_pa
- MagpieData minimum GSbandgap
- MagpieData maximum GSbandgap
- MagpieData range GSbandgap
- MagpieData mean GSbandgap
- MagpieData avg_dev GSbandgap
- MagpieData mode GSbandgap
- MagpieData minimum GSmagmom
- MagpieData maximum GSmagmom
- MagpieData range GSmagmom
- MagpieData mean GSmagmom
- MagpieData avg_dev GSmagmom
- MagpieData mode GSmagmom
- MagpieData minimum SpaceGroupNumber
- MagpieData maximum SpaceGroupNumber
- MagpieData range SpaceGroupNumber
- MagpieData mean SpaceGroupNumber
- MagpieData avg_dev SpaceGroupNumber
- MagpieData mode SpaceGroupNumber
- minimum oxidation state
- maximum oxidation state
- range oxidation state
- std_dev oxidation state
- avg anion electron affinity
- compound possible
- max ionic char
- avg ionic char
object_cols: []
is_fit: true
learner:
learner:
_backend: "TPOTRegressor(config_dict={'sklearn.cluster.FeatureAgglomeration':\
\ {'affinity': ['euclidean',\n \
\ 'l1',\n \
\ 'l2',\n \
\ 'manhattan',\n\
\ \
\ 'cosine'],\n \
\ 'linkage': ['ward',\n \
\ 'complete',\n \
\ 'average']},\n \
\ 'sklearn.decomposition.FastICA': {'tol': array([0.\
\ , 0.05, 0.1 , 0.15, 0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 ,\n 0.55,\
\ 0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1. ])},\n \
\ 'sklearn.decomposition.PCA': {'iterated_power'...\n \
\ crossover_rate=0.1, cv=5, disable_update_check=False,\n early_stop=None,\
\ generations=1000000, max_eval_time_mins=5,\n max_time_mins=60,\
\ memory='auto', mutation_rate=0.9, n_jobs=-1,\n offspring_size=None,\
\ periodic_checkpoint_folder=None,\n population_size=20, random_state=None,\n\
\ scoring='neg_mean_absolute_error', subsample=1.0,\n \
\ template='Selector-Transformer-Regressor', use_dask=False,\n \
\ verbosity=3, warm_start=False)"
_features:
- T
- MagpieData mean Number
- MagpieData mean MendeleevNumber
- MagpieData avg_dev MendeleevNumber
- MagpieData maximum AtomicWeight
- MagpieData range AtomicWeight
- MagpieData avg_dev AtomicWeight
- MagpieData minimum MeltingT
- MagpieData mean MeltingT
- MagpieData mean Column
- MagpieData avg_dev Row
- MagpieData minimum CovalentRadius
- MagpieData range CovalentRadius
- MagpieData mean CovalentRadius
- MagpieData avg_dev CovalentRadius
- MagpieData maximum Electronegativity
- MagpieData range Electronegativity
- MagpieData mean Electronegativity
- MagpieData avg_dev Electronegativity
- MagpieData avg_dev NpValence
- MagpieData mean NdValence
- MagpieData mode NdValence
- MagpieData mean NfValence
- MagpieData avg_dev NfValence
- MagpieData maximum NValence
- MagpieData mean NValence
- MagpieData avg_dev NValence
- MagpieData mode NValence
- MagpieData range NpUnfilled
- MagpieData mean NpUnfilled
- MagpieData avg_dev NpUnfilled
- MagpieData range NUnfilled
- MagpieData mean NUnfilled
- MagpieData avg_dev NUnfilled
- MagpieData minimum GSvolume_pa
- MagpieData range GSvolume_pa
- MagpieData mean GSvolume_pa
- MagpieData avg_dev GSvolume_pa
- MagpieData mean SpaceGroupNumber
- MagpieData avg_dev SpaceGroupNumber
_fitted_target: zT
_logger: null
greater_score_is_better: null
is_fit: true
mode: regression
models: null
random_state: null
tpot_kwargs:
config_dict:
sklearn.cluster.FeatureAgglomeration:
affinity:
- euclidean
- l1
- l2
- manhattan
- cosine
linkage:
- ward
- complete
- average
sklearn.decomposition.FastICA:
tol: "[0. 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 \
\ 0.65\n 0.7 0.75 0.8 0.85 0.9 0.95 1. ]"
sklearn.decomposition.PCA:
iterated_power: range(1, 11)
svd_solver:
- randomized
sklearn.ensemble.ExtraTreesRegressor:
bootstrap:
- true
- false
max_features: '[0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95]'
min_samples_leaf: range(1, 21, 3)
min_samples_split: range(2, 21, 3)
n_estimators:
- 20
- 100
- 200
- 500
- 1000
sklearn.ensemble.GradientBoostingRegressor:
alpha:
- 0.75
- 0.8
- 0.85
- 0.9
- 0.95
- 0.99
learning_rate:
- 0.01
- 0.1
- 0.5
- 1.0
loss:
- ls
- lad
- huber
- quantile
max_depth: range(1, 11, 2)
max_features: "[0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6\
\ 0.65 0.7\n 0.75 0.8 0.85 0.9 0.95 1. ]"
min_samples_leaf: range(1, 21, 3)
min_samples_split: range(2, 21, 3)
n_estimators:
- 20
- 100
- 200
- 500
- 1000
subsample: "[0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6\
\ 0.65 0.7\n 0.75 0.8 0.85 0.9 0.95 1. ]"
sklearn.ensemble.RandomForestRegressor:
bootstrap:
- true
- false
max_features: '[0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95]'
min_samples_leaf: range(1, 21, 3)
min_samples_split: range(2, 21, 3)
n_estimators:
- 20
- 100
- 200
- 500
- 1000
sklearn.feature_selection.SelectFromModel:
estimator:
sklearn.ensemble.ExtraTreesRegressor:
max_features: '[0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95]'
n_estimators:
- 100
threshold: "[0. 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55\
\ 0.6 0.65\n 0.7 0.75 0.8 0.85 0.9 0.95 1. ]"
sklearn.feature_selection.SelectFwe:
alpha: "[0. 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01\
\ 0.011\n 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.02 0.021\
\ 0.022 0.023\n 0.024 0.025 0.026 0.027 0.028 0.029 0.03 0.031 0.032\
\ 0.033 0.034 0.035\n 0.036 0.037 0.038 0.039 0.04 0.041 0.042 0.043\
\ 0.044 0.045 0.046 0.047\n 0.048 0.049]"
score_func:
sklearn.feature_selection.f_regression: null
sklearn.feature_selection.SelectPercentile:
percentile: range(1, 100)
score_func:
sklearn.feature_selection.f_regression: null
sklearn.feature_selection.VarianceThreshold:
threshold:
- 0.0001
- 0.0005
- 0.001
- 0.005
- 0.01
- 0.05
- 0.1
- 0.2
sklearn.kernel_approximation.Nystroem:
gamma: "[0. 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6\
\ 0.65\n 0.7 0.75 0.8 0.85 0.9 0.95 1. ]"
kernel:
- rbf
- cosine
- chi2
- laplacian
- polynomial
- poly
- linear
- additive_chi2
- sigmoid
n_components: range(1, 11)
sklearn.kernel_approximation.RBFSampler:
gamma: "[0. 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6\
\ 0.65\n 0.7 0.75 0.8 0.85 0.9 0.95 1. ]"
sklearn.linear_model.ElasticNetCV:
l1_ratio: "[0. 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55\
\ 0.6 0.65\n 0.7 0.75 0.8 0.85 0.9 0.95 1. ]"
tol:
- 1e-05
- 0.0001
- 0.001
- 0.01
- 0.1
sklearn.linear_model.LassoLarsCV:
normalize:
- true
- false
sklearn.linear_model.RidgeCV: {}
sklearn.neighbors.KNeighborsRegressor:
n_neighbors: range(1, 101)
p:
- 1
- 2
weights:
- uniform
- distance
sklearn.preprocessing.Binarizer:
threshold: "[0. 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55\
\ 0.6 0.65\n 0.7 0.75 0.8 0.85 0.9 0.95 1. ]"
sklearn.preprocessing.MaxAbsScaler: {}
sklearn.preprocessing.MinMaxScaler: {}
sklearn.preprocessing.Normalizer:
norm:
- l1
- l2
- max
sklearn.preprocessing.PolynomialFeatures:
degree:
- 2
include_bias:
- false
interaction_only:
- false
sklearn.preprocessing.RobustScaler: {}
sklearn.preprocessing.StandardScaler: {}
sklearn.svm.LinearSVR:
C:
- 0.0001
- 0.001
- 0.01
- 0.1
- 0.5
- 1.0
- 5.0
- 10.0
- 15.0
- 20.0
- 25.0
dual:
- true
- false
epsilon:
- 0.0001
- 0.001
- 0.01
- 0.1
- 1.0
loss:
- epsilon_insensitive
- squared_epsilon_insensitive
tol:
- 1e-05
- 0.0001
- 0.001
- 0.01
- 0.1
sklearn.tree.DecisionTreeRegressor:
max_depth: range(1, 11, 2)
min_samples_leaf: range(1, 21, 3)
min_samples_split: range(2, 21, 3)
tpot.builtins.OneHotEncoder:
minimum_fraction:
- 0.05
- 0.1
- 0.15
- 0.2
- 0.25
sparse:
- false
threshold:
- 10
tpot.builtins.ZeroCount: {}
xgboost.XGBRegressor:
learning_rate:
- 0.01
- 0.1
- 0.5
- 1.0
max_depth: range(1, 11, 2)
min_child_weight: range(1, 21, 4)
n_estimators:
- 20
- 100
- 200
- 500
- 1000
nthread:
- 1
subsample: '[0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95]'
cv: 5
max_time_mins: 60
memory: auto
n_jobs: -1
population_size: 20
scoring: neg_mean_absolute_error
template: Selector-Transformer-Regressor
verbosity: 3
ml_type: regression
post_fit_df:
columns: 41
obj: <class 'pandas.core.frame.DataFrame'>
samples: 537
pre_fit_df:
columns: 3
obj: <class 'pandas.core.frame.DataFrame'>
samples: 537
reducer:
reducer:
_keep_features: []
_logger: null
_pca: null
_pca_feats: null
_remove_features: []
corr_threshold: 0.95
is_fit: true
n_pca_features: auto
n_rebate_features: 0.3
reducer_params:
tree:
importance_percentile: 0.99
mode: regression
random_state: 0
reducers:
- corr
- tree
removed_features:
corr:
- MagpieData maximum Number
- MagpieData range Number
- MagpieData avg_dev Number
- MagpieData mode Number
- MagpieData maximum MendeleevNumber
- MagpieData range MendeleevNumber
- MagpieData minimum AtomicWeight
- MagpieData mean AtomicWeight
- MagpieData mode AtomicWeight
- MagpieData minimum Column
- MagpieData mean Row
- MagpieData range NsValence
- MagpieData mean NsValence
- MagpieData avg_dev NsValence
- MagpieData minimum NfValence
- MagpieData maximum NfValence
- MagpieData maximum NsUnfilled
- MagpieData range NsUnfilled
- MagpieData mean NsUnfilled
- MagpieData range NdUnfilled
- MagpieData maximum NfUnfilled
- MagpieData range NfUnfilled
- MagpieData mean NfUnfilled
- MagpieData range GSbandgap
- MagpieData mean GSbandgap
- MagpieData avg_dev GSbandgap
- MagpieData maximum GSmagmom
- MagpieData range GSmagmom
- MagpieData mean GSmagmom
- MagpieData avg_dev GSmagmom
- MagpieData minimum SpaceGroupNumber
tree:
- MagpieData minimum Number
- MagpieData minimum MendeleevNumber
- MagpieData mode MendeleevNumber
- MagpieData maximum MeltingT
- MagpieData range MeltingT
- MagpieData avg_dev MeltingT
- MagpieData mode MeltingT
- MagpieData maximum Column
- MagpieData range Column
- MagpieData avg_dev Column
- MagpieData mode Column
- MagpieData minimum Row
- MagpieData maximum Row
- MagpieData range Row
- MagpieData mode Row
- MagpieData maximum CovalentRadius
- MagpieData mode CovalentRadius
- MagpieData minimum Electronegativity
- MagpieData mode Electronegativity
- MagpieData minimum NsValence
- MagpieData maximum NsValence
- MagpieData mode NsValence
- MagpieData minimum NpValence
- MagpieData maximum NpValence
- MagpieData range NpValence
- MagpieData mean NpValence
- MagpieData mode NpValence
- MagpieData minimum NdValence
- MagpieData maximum NdValence
- MagpieData range NdValence
- MagpieData avg_dev NdValence
- MagpieData range NfValence
- MagpieData mode NfValence
- MagpieData minimum NValence
- MagpieData range NValence
- MagpieData minimum NsUnfilled
- MagpieData avg_dev NsUnfilled
- MagpieData mode NsUnfilled
- MagpieData minimum NpUnfilled
- MagpieData maximum NpUnfilled
- MagpieData mode NpUnfilled
- MagpieData minimum NdUnfilled
- MagpieData maximum NdUnfilled
- MagpieData mean NdUnfilled
- MagpieData avg_dev NdUnfilled
- MagpieData mode NdUnfilled
- MagpieData minimum NfUnfilled
- MagpieData avg_dev NfUnfilled
- MagpieData mode NfUnfilled
- MagpieData minimum NUnfilled
- MagpieData maximum NUnfilled
- MagpieData mode NUnfilled
- MagpieData maximum GSvolume_pa
- MagpieData mode GSvolume_pa
- MagpieData minimum GSbandgap
- MagpieData maximum GSbandgap
- MagpieData mode GSbandgap
- MagpieData minimum GSmagmom
- MagpieData mode GSmagmom
- MagpieData maximum SpaceGroupNumber
- MagpieData range SpaceGroupNumber
- MagpieData mode SpaceGroupNumber
retained_features:
- MagpieData minimum MeltingT
- MagpieData mean Column
- MagpieData avg_dev MendeleevNumber
- MagpieData range NUnfilled
- MagpieData avg_dev NpUnfilled
- MagpieData mean NUnfilled
- MagpieData minimum GSvolume_pa
- MagpieData mean NValence
- MagpieData avg_dev SpaceGroupNumber
- MagpieData mean Number
- MagpieData range NpUnfilled
- MagpieData avg_dev CovalentRadius
- MagpieData mean MendeleevNumber
- T
- MagpieData avg_dev NpValence
- MagpieData mean Electronegativity
- MagpieData mode NValence
- MagpieData mean NdValence
- MagpieData avg_dev NValence
- MagpieData mode NdValence
- MagpieData mean MeltingT
- MagpieData avg_dev NfValence
- MagpieData mean GSvolume_pa
- MagpieData maximum NValence
- MagpieData mean CovalentRadius
- MagpieData range GSvolume_pa
- MagpieData maximum AtomicWeight
- MagpieData maximum Electronegativity
- MagpieData mean NfValence
- MagpieData range AtomicWeight
- MagpieData avg_dev AtomicWeight
- MagpieData mean NpUnfilled
- MagpieData avg_dev NUnfilled
- MagpieData avg_dev Row
- MagpieData avg_dev Electronegativity
- MagpieData minimum CovalentRadius
- MagpieData avg_dev GSvolume_pa
- MagpieData range CovalentRadius
- MagpieData range Electronegativity
- MagpieData mean SpaceGroupNumber
tree_importance_percentile: 0.99
target: zT |
@ardunn Fyi, Codacy now complains that
but at my end it certainly is necessary. Without it, I get a bunch of
|
@janosh that's ok for now. I might be able to update it on my end to appease codacy, since I'll need to run the intensive tests (and hopefully fix any issues there) anyway |
Let me know if you would like me to add some tests. I tried running the one's that are already there but
pytest
has been stuck ontest_adaptors.py
for half an hour now.