Skip to content

hangzhaomit/Sound-of-Pixels

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Sound-of-Pixels

Codebase for ECCV18 "The Sound of Pixels".

*This repository is under construction, but the core parts are already there.

Environment

The code is developed under the following configurations.

  • Hardware: 1-4 GPUs (change [--num_gpus NUM_GPUS] accordingly)
  • Software: Ubuntu 16.04.3 LTS, CUDA>=8.0, Python>=3.5, PyTorch>=0.4.0

Training

  1. Prepare video dataset.

    a. Download MUSIC dataset from: https://github.com/roudimit/MUSIC_dataset

    b. Download videos.

  2. Preprocess videos. You can do it in your own way as long as the index files are similar.

    a. Extract frames at 8fps and waveforms at 11025Hz from videos. We have following directory structure:

    data
    ├── audio
    |   ├── acoustic_guitar
    │   |   ├── M3dekVSwNjY.mp3
    │   |   ├── ...
    │   ├── trumpet
    │   |   ├── STKXyBGSGyE.mp3
    │   |   ├── ...
    │   ├── ...
    |
    └── frames
    |   ├── acoustic_guitar
    │   |   ├── M3dekVSwNjY.mp4
    │   |   |   ├── 000001.jpg
    │   |   |   ├── ...
    │   |   ├── ...
    │   ├── trumpet
    │   |   ├── STKXyBGSGyE.mp4
    │   |   |   ├── 000001.jpg
    │   |   |   ├── ...
    │   |   ├── ...
    │   ├── ...
    

    b. Make training/validation index files by running:

    python scripts/create_index_files.py
    

    It will create index files train.csv/val.csv with the following format:

    ./data/audio/acoustic_guitar/M3dekVSwNjY.mp3,./data/frames/acoustic_guitar/M3dekVSwNjY.mp4,1580
    ./data/audio/trumpet/STKXyBGSGyE.mp3,./data/frames/trumpet/STKXyBGSGyE.mp4,493
    

    For each row, it stores the information: AUDIO_PATH,FRAMES_PATH,NUMBER_FRAMES

  3. Train the default model.

./scripts/train_MUSIC.sh
  1. During training, visualizations are saved in HTML format under ckpt/MODEL_ID/visualization/.

Evaluation

  1. (Optional) Download our trained model weights for evaluation.
./scripts/download_trained_model.sh
  1. Evaluate the trained model performance.
./scripts/eval_MUSIC.sh

Reference

If you use the code or dataset from the project, please cite:

    @InProceedings{Zhao_2018_ECCV,
        author = {Zhao, Hang and Gan, Chuang and Rouditchenko, Andrew and Vondrick, Carl and McDermott, Josh and Torralba, Antonio},
        title = {The Sound of Pixels},
        booktitle = {The European Conference on Computer Vision (ECCV)},
        month = {September},
        year = {2018}
    }