license |
---|
unknown |
- 安装RKNPU2 2.0.0b23版本运行库
- 在开发板上安装python-opencv, rknn-toolkit-lite2, onnxruntime等
- 从 https://huggingface.co/happyme531/segment-anything-rknn2 下载模型文件(
sam_vit_b_01ec64.pth.encoder.patched.onnx.rknn
,sam_vit_b_01ec64.pth.decoder.onnx
) - 执行run_sam_rknn.py即可
输入:
提示:
{"type": "point", "data": [540, 512], "label": 1}
输出:
性能: RK3588,单NPU核心,耗时约22000ms
..性能瓶颈: Softmax太大,NPU无法执行
- (使用RKNN-Toolkit2 2.0.0b23版本测试)
- 使用
https://github.com/vietanhdev/samexporter
导出ONNX模型 - 编辑
convert_encoder.py
, 修改模型路径:ONNX_MODEL="sam_vit_b_01ec64.pth.encoder.onnx"
- 执行
convert_encoder.py
- 现在会输出一个rknn文件, 但它的执行速度非常慢(~120s), 因为模型结构需要调整
- 执行
patch_graph.py
, 会生成调整后的onnx文件 - 再次编辑
convert_encoder.py
, 修改模型路径, 执行转换即可 - decoder模型运行很快,因此无需转换,直接用onnxruntime cpu运行即可
- Install RKNPU2 2.0.0b23 version runtime library
- Install python-opencv, rknn-toolkit-lite2, onnxruntime, etc. on the development board
- Download model files from https://huggingface.co/happyme531/segment-anything-rknn2 (
sam_vit_b_01ec64.pth.encoder.patched.onnx.rknn
,sam_vit_b_01ec64.pth.decoder.onnx
) - Execute run_sam_rknn.py
Input:
Prompt:
{"type": "point", "data": [540, 512], "label": 1}
Output:
Performance: RK3588, single NPU core, takes about 22000ms
..Performance bottleneck: Softmax is too large, NPU cannot execute
- (Tested with RKNN-Toolkit2 2.0.0b23 version)
- Use
https://github.com/vietanhdev/samexporter
to export ONNX model - Edit
convert_encoder.py
, modify the model path:ONNX_MODEL="sam_vit_b_01ec64.pth.encoder.onnx"
- Execute
convert_encoder.py
- Now it will output an rknn file, but its execution speed is very slow (~120s) because the model structure needs adjustment
- Execute
patch_graph.py
, which will generate an adjusted onnx file - Edit
convert_encoder.py
again, modify the model path, and execute the conversion - The decoder model runs quickly, so there's no need for conversion. It can be run directly using onnxruntime CPU.